分析 (1)先根據(jù)題意列出函數(shù)關(guān)系式,再求其最值即可;
(2)列舉法可以得出50×50=2500最大,然后用二次函數(shù)的知識(shí)說明理由即可;
(3)設(shè)y=(m-2n)(8-m+2n)=(m-2n)[8-(m-2n)],則y=-(m-2n)2+8(m-2n),根據(jù)二次函數(shù)的頂點(diǎn)公式即可得到結(jié)論.
解答 解:(1)∵設(shè)矩形的一邊長為xcm,則另一邊長為(10-x)cm,
∴其面積為s=x(10-x)=-x2+10x=-(x-5)2+25,
∴當(dāng)x=5時(shí),s最大=25.
∴當(dāng)矩形的長為5cm時(shí),面積有最大值是25cm2.
故答案為:25;
(2)50×50=2500的乘積最大,
猜想驗(yàn)證,∵兩個(gè)數(shù)的和為100,當(dāng)兩個(gè)數(shù)分別為50時(shí),乘積最大.
理由:設(shè)這兩個(gè)數(shù)的乘積為n,其中一個(gè)數(shù)為x,另一個(gè)數(shù)為m-x,由題意,得
n=x(m-x),
n=-x2+mx,
n=-(x-$\frac{m}{2}$)2+$\frac{{m}^{2}}{4}$;
∴a=-1<0,
∴當(dāng)x=$\frac{m}{2}$時(shí),n最大=$\frac{{m}^{4}}{4}$;
(3)設(shè)y=(m-2n)(8-m+2n)=(m-2n)[8-(m-2n)],
則y=-(m-2n)2+8(m-2n),
當(dāng)m-2n=-$\frac{8}{2(-1)}$=4時(shí),
y最大=$\frac{-64}{4×(-1)}$=16,
∴代數(shù)式(m-2n)(8-m+2n)的最大值是16,m和n之間的關(guān)系式是m=2n+4,
故答案為:16,m=2n+4.
點(diǎn)評 此題考查的是二次函數(shù)的最值問題,根據(jù)題意列出二次函數(shù)的解析式是解答此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com