如圖,一塊長(zhǎng)方體磚寬AN=5cm,長(zhǎng)ND=10cm,CD上的點(diǎn)B距地面的高BD=8cm,地面上A處的一只螞蟻到B處吃食,需要爬行的最短路徑是__________cm.
17cm.
【考點(diǎn)】平面展開-最短路徑問(wèn)題.
【分析】要求不在同一平面內(nèi)的兩點(diǎn)間的最短距離,首先要把兩點(diǎn)所在的兩個(gè)平面展開到一個(gè)平面內(nèi),然后根據(jù)題意確定數(shù)據(jù),再根據(jù)勾股定理即可求解.
【解答】解:①如圖1所示,連接AB,則AB的長(zhǎng)即為A處到B處的最短路程.
在Rt△ABD中,
∵AD=AN+DN=5+10=15cm,BD=8cm,
∴AB===17(cm).
②如圖2所示,
AB===(cm),
∵>17,
∴需要爬行的最短路徑是17cm.
故答案為:17.
【點(diǎn)評(píng)】本題的是平面展開﹣最短路徑問(wèn)題,解答此類問(wèn)題時(shí)要先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點(diǎn)之間的最短路徑.一般情況是兩點(diǎn)之間,線段最短.在平面圖形上構(gòu)造直角三角形解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,已知三角形紙片ABC,AB=AC,∠A=50°,將其折疊,如圖2,使點(diǎn)A與點(diǎn)B重合,折痕為ED,點(diǎn)E,D分別在AB,AC上,求∠DBC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,有一塊直角三角形紙片,兩直角邊AC=3cm,BC=4cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列語(yǔ)句中正確的有( )句
①關(guān)于一條直線對(duì)稱的兩個(gè)圖形一定能重合;
②兩個(gè)能重合的圖形一定關(guān)于某條直線對(duì)稱;
③一個(gè)軸對(duì)稱圖形不一定只有一條對(duì)稱軸;
④兩個(gè)軸對(duì)稱圖形的對(duì)應(yīng)點(diǎn)一定在對(duì)稱軸的兩側(cè).
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
直角三角形兩條直角邊的長(zhǎng)分別為5、12,則斜邊長(zhǎng)為__________,斜邊上的高為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
.如圖,方格紙上畫有AB、CD兩條線段,請(qǐng)你在圖中添上一條線段,使圖中的3條線段組成一個(gè)軸對(duì)稱圖形.(不寫作法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列實(shí)數(shù)中,、、﹣3.14、、、、0.020020002…,其中無(wú)理數(shù)的個(gè)數(shù)是( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,D是△ABC的邊BC上的一點(diǎn),且∠1=∠2,∠3=∠4,∠BAC=63°,則∠DAC=__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com