【題目】閱讀下面的材料:

如圖①,在△ABC中,試說明∠A+∠B+∠C=180°.

分析:通過畫平行線,將∠A、∠B、∠C作等量代換,使各角之和恰為一個平角,依輔助線不同而得多種方法.

【答案】見解析

【解析】

試題(1)根據(jù)平行線的性質(zhì)進(jìn)行證明即可;
(2)根據(jù)兩直線平行,同位角相等可得根據(jù)同角的補角相等得到從而得證.

試題解析:證法1:如圖2,延長BCD,過點CCEBA,

BACE,

∴∠B=2(兩直線平行,同位角相等),

A=1(兩直線平行,內(nèi)錯角相等).

又∵,

.

證法2:如圖3,過線段BC上任一點F(B.C除外),FHAC,FGAB,

HFAC

∴∠1=C,

GFAB

∴∠B=3,

∴∠2=A,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段MN=8,C是線段MN上一動點,在MN的同側(cè)分別作等邊△CMD和等邊△CNE.
(1)如圖①,連接DN與EM,兩條線段相交于點H,求證ME=DN,并求∠DHM的度數(shù);

(2)如圖②,過點D、E分別作線段MN的垂線,垂足分別為F、G,問:在點C運動過程中,DF+EG的長度是否為定值,如果是,請求出這個定值,如果不是請說明理由;

(3)當(dāng)點C由點M移到點N時,點H移到的路徑長度為(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點A,O,B分別表示-16,0,14,點P,Q分別從點A,B同時開始沿數(shù)軸正方向運動,點P的速度是每秒3個單位,點Q的速度是每秒1個單位,運動時間為t秒.若點P,Q,O三點在運動過程中,其中一點恰好是另外兩點為端點構(gòu)成的線段的三等分點時,則運動時間為_秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,AE∥CD,CE∥AB,連接DE交AC于點O.

(1)證明:四邊形ADCE為菱形;
(2)證明:DE=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動點P從點C出發(fā),沿CA方向運動,速度是2cm/s,動點Q從點B出發(fā),沿BC方向運動,速度是1cm/s.

(1)幾秒后P,Q兩點相距25cm?
(2)幾秒后△PCQ與△ABC相似?
(3)設(shè)△CPQ的面積為S1 , △ABC的面積為S2 , 在運動過程中是否存在某一時刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A是雙曲線y= 在第一象限的分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為斜邊做等腰直角△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y= (k<0)上運動,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD為⊙O的直徑,點B在⊙O上,連接BC、BD,過點B的切線AE與CD的延長線交于點A,OE∥BD,交BC于點F,交AE于點E.

(1)求證:△BEF∽△DBC.;
(2)若⊙O的半徑為3,∠C=32°,求BE的長.(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,點E是CD上的一個動點(E不與D重合),過點E作EF∥AC,交AD于點F(當(dāng)E運動到C時,EF與AC重合),把△DEF沿著EF對折,點D的對應(yīng)點是點G.設(shè)DE=x,△GEF與四邊形ABCD重疊部分的面積為y.

(1)求CD的長及∠1的度數(shù);
(2)若點G恰好在BC上,求此時x的值;
(3)求y與x之間的函數(shù)關(guān)系式,并求x為何值時,y的值最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,BC=12,B=30°,AB的垂直平分線DEBC邊于點E,AC的垂直平分線MNBC于點N.

(1)求AEN的周長;

(2)求證:BE=EN=NC.

查看答案和解析>>

同步練習(xí)冊答案