【題目】在△ABC中,AB=AC,BC=12,∠B=30°,AB的垂直平分線DE交BC邊于點(diǎn)E,AC的垂直平分線MN交BC于點(diǎn)N.
(1)求△AEN的周長(zhǎng);
(2)求證:BE=EN=NC.
【答案】(1)12;(2)見解析
【解析】試題分析:(1)根據(jù)線段的垂直平分線的性質(zhì)得到EB=EA,NA=NC,根據(jù)三角形的周長(zhǎng)公式計(jì)算即可;
(2)根據(jù)等腰三角形的性質(zhì)和三角形的外角的性質(zhì)證明△AEN是等邊三角形,等量代換證明即可.
試題解析:(1)∵DE是AB的垂直平分線,
∴EB=EA,
∵MN是AC的垂直平分線,
∴NA=NC,
則△AEN的周長(zhǎng)=AE+AN+EN=BE+EN+NC=BC=12;
(2)證明:∵AB=AC,∠B=30°,
∴∠C=∠B=30°,
∵EB=EA,NA=NC,
∴∠EAB=∠B=30°,∠NAC=∠C=30°,
∴∠AEN=∠EAB+∠B=60°,∠ANE=∠NAC+∠C=60°,
∴△AEN是等邊三角形,
∴BE=EN=NC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
如圖①,在△ABC中,試說明∠A+∠B+∠C=180°.
分析:通過畫平行線,將∠A、∠B、∠C作等量代換,使各角之和恰為一個(gè)平角,依輔助線不同而得多種方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是A.B兩所學(xué)校藝術(shù)節(jié)期間收到的各類藝術(shù)作品情況的統(tǒng)計(jì)圖:
A學(xué)校 B學(xué)校
(1)從圖中你能否看出哪所學(xué)校收到的水粉畫作品的數(shù)量多?為什么?
(2)已知A學(xué)校收到的剪紙作品比B學(xué)校的多20件,收到的書法作品比B學(xué)校的少100件,請(qǐng)問這兩所學(xué)校收到藝木作品的總數(shù)分別是多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的布袋里裝有3個(gè)球,其中2個(gè)紅球,1個(gè)白球,它們除顏色外其余都相同.
(1)摸出1個(gè)球,記下顏色后放回,并攪勻,再摸出1個(gè)球,求兩次摸出的球恰好顏色不同的概率(請(qǐng)用“畫樹狀圖”或“列表”等方法寫出分析過程);
(2)現(xiàn)再將n個(gè)白球放入布袋,攪勻后,使摸出1個(gè)球是白球的概率為 ,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.
求證:∠C=∠D.
證明:因?yàn)椤?/span>1=∠2(已知),∠1=∠3( )
得∠2=∠3( )
所以AE//_______( )
得∠4=∠F( )
因?yàn)?/span>__________(已知)
得∠4=∠A
所以______//_______( )
所以∠C=∠D( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于點(diǎn)N,交BC的延長(zhǎng)線于點(diǎn)M.
(1)若∠A=40°,求∠NMB的度數(shù).
(2)如果將(1)中∠A的度數(shù)改為70°,其余條件不變,求∠NMB的度數(shù).
(3)由(1)(2)你發(fā)現(xiàn)了什么規(guī)律?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是以O(shè)為圓心,AB為直徑的半圓的中點(diǎn),AB=2,等腰直角三角板45°角的頂點(diǎn)與點(diǎn)P重合,當(dāng)此三角板繞點(diǎn)P旋轉(zhuǎn)時(shí),它的斜邊和直角邊所在的直線與直徑AB分別相交于C,D兩點(diǎn).設(shè)線段AD的長(zhǎng)為x,線段BC的長(zhǎng)為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機(jī)可以計(jì)算行走的步數(shù)與相應(yīng)的能量消耗.對(duì)比手機(jī)數(shù)據(jù)發(fā)現(xiàn)小明步行12 000步與小紅步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步數(shù)比小紅多10步,求小紅每消耗1千卡能量需要行走多少步?
【答案】小紅每消耗1千卡能量需要行走30步.
【解析】分析:設(shè)小紅每消耗1千卡能量需要行走x步,則小明每消耗1千卡能量需要行走(x+10)步,根據(jù)數(shù)量關(guān)系消耗能量千卡數(shù)=行走步數(shù)÷每消耗1千卡能量需要行走步數(shù)結(jié)合小明步行12000步與小紅步行9000步消耗的能量相同,即可得出關(guān)于x的分式方程,解之后經(jīng)檢驗(yàn)即可得出結(jié)論.
詳解:設(shè)小紅每消耗1千卡能量需要行走x步,則小明每消耗1千卡能量需要行走(x+10)步,
根據(jù)題意,得
,
解得x=30.
經(jīng)檢驗(yàn):x=30是原方程的解.
答:小紅每消耗1千卡能量需要行走30步.
點(diǎn)睛:本題考查了分式方程的應(yīng)用,根據(jù)數(shù)量關(guān)系消耗能量千卡數(shù)=行走步數(shù)÷每消耗1千卡能量需要行走步數(shù)列出關(guān)于x的分式方程是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
25
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于F,連接CF.
(1)求證:四邊形ADCF是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCF為正方形,請(qǐng)你添加適當(dāng)?shù)臈l件并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BD相交于點(diǎn)N,連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長(zhǎng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com