【題目】已知:如圖,直線a∥b,點、分別在、上,且,.點、從點同時出發(fā),分別以1個單位/秒,2個單位/秒的速度,在直線b上沿相反方向運動.設(shè)運動秒后,得到△ACD.(友情提醒:本題的結(jié)果可用根號表示)
(1)當(dāng)秒時,點到直線的距離為 ;
(2)若△ACD是直角三角形,t的值為 ;
(3)若△ACD是等腰三角形,求t的值.
【答案】(1);(2);(3)當(dāng)t=s或s時,△ACD為等腰三角形.
【解析】
(1)根據(jù)點到直線的距離是垂線段的長,求解即可.
(2)因為AB⊥b,所以∠ACB,∠ADB不可能等于90°,則只有∠CAD=90°,利用勾股定理列方程求解即可.
(3)因為BC<BD,所以 AC<AD,∴ 若△ACD是等腰三角形,則AD=CD或AC=CD, 分情況列方程求解即可.
解:(1)由題意得,BD=2×6=12,AB=5,
∵ AB⊥b,
∴ 在Rt△ABD中,
= =13,
設(shè)B到直線AD的距離是h,
則 ,
∴h=;
(2)∵AB⊥b,
∴∠ACB,∠ADB不可能等于90°
若△ACD是直角三角形,
則∠CAD=90°,且BC=t,BD=2t,CD=BC+BD=3t,
,
,
∴ 在Rt△ACD中,
,
∴25+t2+25+4t2=9 t2,
∴ t=.
(3)∵BC<BD,
∴ AC<AD,
∴ 若△ACD是等腰三角形,則AD=CD或AC=CD,
若AD=CD,
由題意得,BC=t,BD=2t, ∴AD=CD=3t
在Rt△ABD中,AB=5, 由勾股定理可得:
BD2+AB2=AD2,即(2t)2+52=(3t)2 ,
即t2=5,所以t= ,
當(dāng)AC=CD時,
同理,在Rt△ABC中,AB=5,由勾股定理可得:
BC2+AB2=AC2,t2+52=(3t)2 ,
即t2= ,所以t= ,
綜上所述,當(dāng)t=s或s時,△ACD為等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】依法納稅是每個公民應(yīng)盡的義務(wù).新稅法規(guī)定:居民個人的綜合所得,以每一納稅月收入減去費用5000元以及專項扣除、專項附加扣除和依法確定的其它扣除后的余額,為個人應(yīng)納稅所得額.已知李先生某月的個人應(yīng)納稅所得額比張先生的多1500元,個人所得稅稅率相同情況下,李先生的個人所得稅稅額為76.5元,而張先生的個人所得稅稅額為31.5元.求李先生和張先生應(yīng)納稅所得額分別為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a,b,c滿足a+b=ab=c,有下列結(jié)論:①若c≠0,則;②若a=3,則b+c=9;③若c≠0,則(1-a)(1-b)=;④若c=5,則a2+b2=15. 其中正確的是( )
A. ①③④ B. ①②④ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AB上一點,∠COD=90°,OE、OF分別是∠COB、∠AOD的平分線,且∠COB:∠AOD=4:9.
(1)寫出圖中∠BOD的余角和補角;
(2)求∠AOC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的邊OA在x軸上,邊OC在y軸上,點B的坐標為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E,那么點D的坐標為()
A.(﹣ , )
B.(﹣ , )
C.(﹣ , )
D.(﹣ , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景知識)
數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:
例如,若數(shù)軸上點、點表示的數(shù)分別為、,則、兩點之間的距離,線段的中點表示的數(shù)為.
(問題情境)
在數(shù)軸上,點表示的數(shù)為-20,點表示的數(shù)為10,動點從點出發(fā)沿數(shù)軸正方向運動,同時,動點也從點出發(fā)沿數(shù)軸負方向運動,已知運動到4秒鐘時,、兩點相遇,且動點、運動的速度之比是(速度單位:單位長度/秒).
備用圖
(綜合運用)
(1)點的運動速度為______單位長度/秒,點的運動速度為______單位長度/秒;
(2)當(dāng)時,求運動時間;
(3)若點、在相遇后繼續(xù)以原來的速度在數(shù)軸上運動,但運動的方向不限,我們發(fā)現(xiàn):隨著動點、的運動,線段的中點也隨著運動.問點能否與原點重合?若能,求出從、相遇起經(jīng)過的運動時間,并直接寫出點的運動方向和運動速度;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.
(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2 , 并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com