【題目】(背景知識)
數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:
例如,若數(shù)軸上點、點表示的數(shù)分別為、,則、兩點之間的距離,線段的中點表示的數(shù)為.
(問題情境)
在數(shù)軸上,點表示的數(shù)為-20,點表示的數(shù)為10,動點從點出發(fā)沿數(shù)軸正方向運動,同時,動點也從點出發(fā)沿數(shù)軸負方向運動,已知運動到4秒鐘時,、兩點相遇,且動點、運動的速度之比是(速度單位:單位長度/秒).
備用圖
(綜合運用)
(1)點的運動速度為______單位長度/秒,點的運動速度為______單位長度/秒;
(2)當時,求運動時間;
(3)若點、在相遇后繼續(xù)以原來的速度在數(shù)軸上運動,但運動的方向不限,我們發(fā)現(xiàn):隨著動點、的運動,線段的中點也隨著運動.問點能否與原點重合?若能,求出從、相遇起經(jīng)過的運動時間,并直接寫出點的運動方向和運動速度;若不能,請說明理由.
【答案】(1)動點P運動的速度為4.5單位長度/秒,動點Q運動的速度為3單位長度/秒;(2)運動時間為或秒;(3)點M能與原點重合,它沿數(shù)軸正方向運動,運動速度為或沿數(shù)軸正方向運動,運動速度為,理由見解析
【解析】
(1)設(shè)動點P運動的速度分別為3x單位長度/秒,Q運動的速度分別為2x單位長度/秒.根據(jù)“運動到4秒鐘時,P、Q兩點相遇”列方程,求解即可;
(2)設(shè)運動時間為t秒.點P表示的數(shù)為-20+4.5t,點Q表示的數(shù)為10-3t,根據(jù)“PQ=AB”,列方程,求解即可;
(3)先求出P、Q相遇點表示的數(shù),設(shè)從P、Q相遇起經(jīng)過的運動時間為t秒時,PQ的中點M與原點重合,求出P、Q此時表示的數(shù).然后分四種情況列方程,求解即可.
(1)設(shè)動點P運動的速度分別為3x單位長度/秒,Q運動的速度分別為2x單位長度/秒.根據(jù)題意得:
4×3x+4×2x=30,(或-20+4×3x=10-4×2x)
解得:x=1.5.
3x=4.5(單位長度/秒),2x=3(單位長度/秒).
答:動點P運動的速度為4.5單位長度/秒,動點Q運動的速度為3單位長度/秒.
(2)設(shè)運動時間為t秒.
由題意知:點P表示的數(shù)為-20+4.5t,點Q表示的數(shù)為10-3t,根據(jù)題意得:
|(-20+4.5t)-(10-3t)|=×|(-20)-10|
整理得:|7.5t-30|=10
7.5t-30=10或7.5t-30=-10
解得:t=或t=.
答:運動時間為或秒.
(3)P、Q相遇點表示的數(shù)為-20+4×4.5=-2(注:當P、Q兩點重合時,線段PQ的中點M也與P、Q兩點重合)
設(shè)從P、Q相遇起經(jīng)過的運動時間為t秒時,點M與原點重合.
①點P、Q均沿數(shù)軸正方向運動,則:
解得:t=.
此時點M能與原點重合,它沿數(shù)軸正方向運動,運動速度為2÷(單位長度/秒);
②點P沿數(shù)軸正方向運動,點Q沿數(shù)軸負方向運動,則:
解得:t=.
此時點M能與原點重合,它沿數(shù)軸正方向運動,運動速度為2÷=(單位長度/秒);
③點P沿數(shù)軸負方向運動,點Q沿數(shù)軸正方向運動,則:
解得:t=-(舍去).
此時點M不能與原點重合;
④點P沿數(shù)軸負方向運動,點Q沿數(shù)軸負方向運動,則:
解得:t=-(舍去).
此時點M不能與原點重合.
綜上所述:點M能與原點重合,它沿數(shù)軸正方向運動,運動速度為或沿數(shù)軸正方向運動,運動速度為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3=∠4,則a與c平行嗎?為什么?
解:a與c平行.
理由:因為∠1=∠2(_________________),
所以a∥b(_________________).
因為∠3=∠4(_________________),
所以b∥c(_________________).
所以a∥c(_________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知射線AB與直線CD交于點O,OF平分∠BOC,OG⊥OF于點O,AE∥OF,且∠A=30°.
(1)求∠DOF的度數(shù);
(2)試說明OD平分∠AOG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線a∥b,點、分別在、上,且,.點、從點同時出發(fā),分別以1個單位/秒,2個單位/秒的速度,在直線b上沿相反方向運動.設(shè)運動秒后,得到△ACD.(友情提醒:本題的結(jié)果可用根號表示)
(1)當秒時,點到直線的距離為 ;
(2)若△ACD是直角三角形,t的值為 ;
(3)若△ACD是等腰三角形,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角△BAD中,延長斜邊BD到點C,使DC= BD,連接AC,若tanB= ,則tan∠CAD的值( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,從邊長為a的正方形紙片中剪去一個邊長為b的小正方形,則陰影部分的面積為 (寫成兩數(shù)平方差的形式);若將圖1中的剩余紙片沿線段AB剪開,再把剪成的兩張紙片拼成如圖2的長方形,則長方形的面積是 (寫成兩個多項式相乘的形式);比較兩圖陰影部分的面積,可以得到一個公式: ;
(2)由此可知,通過圖形的拼接可以驗證一些等式.現(xiàn)在給你兩張邊長為a的正方形紙片、三張長為a,寬為b的長方形紙片和一張邊長為b的正方形紙片(如圖3所示),請你用這些紙片拼出一個長方形(所給紙片要用完),并寫出它所驗證的等式: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了準備“迎新活動”,用700元購買了甲、乙兩種小禮品260個,其中購買甲種禮品比乙種禮品少用了100元.
(1)購買乙種禮品花了______元;
(2)如果甲種禮品的單價比乙種禮品的單價高20%,求乙種禮品的單價.(列分式方程解應(yīng)用題)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A(a,0)是x軸正半軸上一點,C是第四象限一點,CB⊥y軸,交y軸負半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點坐標;
(2)如圖2,設(shè)D為線段OB上一動點,當AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數(shù).
(3)如圖3,當D點在線段OB上運動時,作DM⊥AD交BC于M點,∠BMD、∠DAO的平分線交于N點,則D點在運動過程中,∠N的大小是否變化?若不變,求出其值,若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠CDE=119°,GF交∠DEB的平分線EF于點F,∠AGF=130°,則∠F等于( )
A.9.5°
B.19°
C.15°
D.30°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com