【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=(x-2)2x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過點(diǎn)BBCx軸,交拋物線于點(diǎn)C,過點(diǎn)AADy軸,交BC于點(diǎn)D,點(diǎn)PBC下方的拋物線上(不與點(diǎn)B,C重合),連接PC,PD,設(shè)PCD的面積為S,則S的最大值是________。

【答案】4

【解析】

根據(jù)拋物線的解析式求得AB的坐標(biāo),和對稱軸方程,根據(jù)BCx軸,ADy軸對稱B、C是拋物線上的對稱點(diǎn),所以BD=DC=2,因?yàn)轫旤c(diǎn)A到直線BC的距離最大,所以點(diǎn)PA重合時(shí),△PCD面積最大,最大值為DCAD=×2×4=4

∵拋物線y=(x2)2x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
A(2,0),B(0,4),
∵拋物線y=(x2)2與的對稱軸為x=2,BCx,ADy軸,
∴直線AD就是拋物線y=(x2)2與的對稱軸,
B、C關(guān)于直線BD對稱,
BD=DC=2,
∵頂點(diǎn)A到直線BC的距離最大,
∴點(diǎn)PA重合時(shí),PCD面積最大,最大值為DCAD=×2×4=4.
故最大值為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列表格是某學(xué)校女子排球隊(duì)隊(duì)員年齡統(tǒng)計(jì)表:

年齡(歲)

13

14

15

16

人數(shù)(人)

1

2

4

5

1)該排球隊(duì)隊(duì)員年齡的眾數(shù)是   歲;

2)事件從該排球隊(duì)隨機(jī)選擇一名隊(duì)員,其年齡為13發(fā)生的概率為   

3)教練決定從年齡為13歲和14歲的A、B、C三名隊(duì)員中,隨機(jī)選取兩名隊(duì)員進(jìn)行接發(fā)球訓(xùn)練,求隊(duì)員A、B同時(shí)被選中的概率.(樹狀圖或列表法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)CCF平行于BAPQ于點(diǎn)F,連接AF

(1)求證:AED≌△CFD;

(2)求證:四邊形AECF是菱形.

(3)若AD=3,AE=5,則菱形AECF的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形ABCD沿AC折疊,使點(diǎn)D與點(diǎn)E重合,AEBC于點(diǎn)F,過點(diǎn)EEGCDAC于點(diǎn)G,交CF于點(diǎn)H,連接DG

(1)求證:四邊形ECDG是菱形;

(2)若DG=6,AG,求EH的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳生活,綠色出行共享單車已經(jīng)成了很多人出行的主要選擇.

1)考慮到共享單車市場競爭激烈,摩拜公司準(zhǔn)備用不超過60000元的資金再購進(jìn)A,B兩種規(guī)格的自行車100輛,且A型車不超過60輛.已知A型的進(jìn)價(jià)為500/輛,B型車進(jìn)價(jià)為700/輛,設(shè)購進(jìn)A型車m輛,求出m的取值范圍;

2)已知A型車每月產(chǎn)生的利潤是100/輛,B型車每月產(chǎn)生的利潤是90/輛,在(1)的條件下,求公司每月的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙0的直徑,∠ACB=60°,連接AB,過A,B兩點(diǎn)分別作⊙O的切線,兩切線交于點(diǎn)P.若已知⊙0半徑為1,則△PAB的周長為( )

A. B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

(3)當(dāng)這個(gè)苗圃園的面積不小于100平方米時(shí),直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=38°,

(1)如圖①,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的大;

(2)如圖②,過點(diǎn)D作⊙O的切線,與AB的延長線交于點(diǎn)P,若DP∥AC,求∠OCD的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,,CD平分AB于點(diǎn)D,將△CDB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△CEF的位置,點(diǎn)FAC上.

(1)△CDB旋轉(zhuǎn)了________度;

(2)連結(jié)DE,判斷DEBC的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案