【題目】如圖,在△ABC中,∠ACB=90°,點D為AB的中點,AC=3,cosA=,將△DAC沿著CD折疊后,點A落在點E處,則BE的長為( 。
A. 5 B. 4 C. 7 D. 5
【答案】C
【解析】
連接AE,根據(jù)余弦的定義求出AB,根據(jù)勾股定理求出BC,根據(jù)直角三角形的性質(zhì)求出CD,根據(jù)面積公式出去AE,根據(jù)翻轉(zhuǎn)變換的性質(zhì)求出AF,根據(jù)勾股定理、三角形中位線定理計算即可.
解:連接AE,
∵AC=3,cos∠CAB=,
∴AB=3AC=9,
由勾股定理得,BC==6,
∠ACB=90°,點D為AB的中點,
∴CD=AB=,
S△ABC=×3×6=9,
∵點D為AB的中點,
∴S△ACD=S△ABC=,
由翻轉(zhuǎn)變換的性質(zhì)可知,S四邊形ACED=9,AE⊥CD,
則×CD×AE=9,
解得,AE=4,
∴AF=2,
由勾股定理得,DF==,
∵AF=FE,AD=DB,
∴BE=2DF=7,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD對角線AC上一動點,點E在射線BC上,且PB=PE,連接PD,O為AC中點.
(1)如圖1,當(dāng)點P在線段AO上時,試猜想PE與PD的數(shù)量關(guān)系和位置關(guān)系,不用說明理由;
(2)如圖2,當(dāng)點P在線段OC上時,(1)中的猜想還成立嗎?請說明理由;
(3)如圖3,當(dāng)點P在AC的延長線上時,請你在圖3中畫出相應(yīng)的圖形(尺規(guī)作圖,保留作圖痕跡,不寫作法),并判斷(1)中的猜想是否成立?若成立,請直接寫出結(jié)論;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,為邊上的中線,過點作于點,過點作平行線,交的延長線于點,在延長線上截得,連結(jié)、.若,,則四邊形的面積等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,點,直線交軸于點.
(1)求直線的表達式和點的坐標(biāo);
(2)在直線上有一點,使得的面積為4,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、點B、點C均落在格點上.
(I)計算△ABC的邊AC的長為_____.
(II)點P、Q分別為邊AB、AC上的動點,連接PQ、QB.當(dāng)PQ+QB取得最小值時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點P、Q的位置是如何找到的_____(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADC都是等邊三角形,點E,F同時分別從點B,A出發(fā),以相同的速度各自沿BA,AD的方向運動到點A,D停止,連結(jié)EC,FC.
(1)在點E,F運動的過程中,∠ECF的大小是否隨之變化?請說明理由.
(2)在點E,F運動的過程中,以A,E,C,F為頂點的四邊形的面積變化了嗎?請說明理由.
(3)連結(jié)EF,在圖中找出所有和∠ACE相等的角,并說明理由.
(4)若點E,F在射線BA,射線AD上繼續(xù)運動下去,(1)中的結(jié)論還成立嗎?直接寫出結(jié)論,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BD平分∠ABF,且交AE于點D.
(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)設(shè)AP交BD于點O,交BF于點C,連接CD,當(dāng)AC⊥BD時,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市文化宮學(xué)習(xí)十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學(xué)捐贈書包活動.首次用2000元在商店購進一批學(xué)生書包,活動進行后發(fā)現(xiàn)書包數(shù)量不夠,又購進第二批同樣的書包,所購數(shù)量是第一批數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元.
(1)求文化官第一批購進書包的單價是多少?
(2)商店兩批書包每個的進價分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com