【題目】如圖,點P是正方形ABCD對角線AC上一動點,點E在射線BC上,且PB=PE,連接PD,O為AC中點.
(1)如圖1,當點P在線段AO上時,試猜想PE與PD的數(shù)量關系和位置關系,不用說明理由;
(2)如圖2,當點P在線段OC上時,(1)中的猜想還成立嗎?請說明理由;
(3)如圖3,當點P在AC的延長線上時,請你在圖3中畫出相應的圖形(尺規(guī)作圖,保留作圖痕跡,不寫作法),并判斷(1)中的猜想是否成立?若成立,請直接寫出結論;若不成立,請說明理由.
【答案】(1)PE與PD的數(shù)量關系和位置關系分別為:PE=PD,PE⊥PD;(2)成立,理由見解析;(3)成立,理由見解析.
【解析】
(1)根據(jù)點P在線段AO上時,利用三角形的全等判定可以得出PE⊥PD,PE=PD;
(2)利用三角形全等得出,BP=PD,由PB=PE,得出PE=PD,要證PE⊥PD;從三方面分析,當點E在線段BC上(E與B、C不重合)時,當點E與點C重合時,點P恰好在AC中點處,當點E在BC的延長線上時,分別分析即可得出;
(3)利用PE=PB得出P點在BE的垂直平分線上,利用垂直平分線的性質只要以P為圓心,PB為半徑畫弧即可得出E點位置,利用(2)中證明思路即可得出答案.
(1)當點P在線段AO上時,
在△ABP和△ADP中,
∴△ABP≌△ADP,
∴BP=DP,
∵PB=PE,
∴PE=PD,
過點P做PM⊥CD于點M,作PN⊥BC,于點N,
∵PB=PE,PN⊥BE,
∴BN=NE,
∵BN=DM,
∴DM=NE,
在Rt△PNE與Rt△PMD中,
∵PD=PE,NE=DM,
∴Rt△PNE≌Rt△PMD,
∴∠DPM=∠EPN,
∵∠MPN=90°,
∴∠DPE=90°,
故PE⊥PD,
PE與PD的數(shù)量關系和位置關系分別為:PE=PD,PE⊥PD;
(2)∵四邊形ABCD是正方形,AC為對角線,
∴BA=DA,∠BAP=∠DAP=45°,
∵PA=PA,
∴△BAP≌△DAP(SAS),
∴PB=PD,
又∵PB=PE,
∴PE=PD.
(i)當點E與點C重合時,點P恰好在AC中點處,此時,PE⊥PD.
(ii)當點E在BC的延長線上時,如圖.
∵△ADP≌△ABP,
∴∠ABP=∠ADP,
∴∠CDP=∠CBP,
∵BP=PE,
∴∠CBP=∠PEC,
∴∠PEC=∠PDC,
∵∠1=∠2,
∴∠DPE=∠DCE=90°,
∴PE⊥PD.
綜合(i)(ii),PE⊥PD;
(3)同理即可得出:PE⊥PD,PD=PE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=40°,分別以AB,AC為邊作兩個等腰三角形ABD和ACE,且AB=AD,AC=AE,∠BAD=∠CAE=90°.
(1)求∠DBC的度數(shù).
(2)求證:BD=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC是等邊三角形.
(1)如圖,點D在AB邊上,點E在AC邊上,BD=CE,BE與CD交于點F.試判斷BF與CF的數(shù)量關系,并加以證明;
(2)點D是AB邊上的一個動點,點E是AC邊上的一個動點,且BD=CE,BE與CD交于點F.若△BFD是等腰三角形,求∠FBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)x2﹣x﹣1=0; (2)x2﹣2x=2x+1;
(3)x(x﹣2)﹣3x2=﹣1; (4)(x+3)2=(1﹣2x)2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.
(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;
(2)設x1,x2分別是方程的兩個根,且滿足x12+x22=x1x2+10,求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),
(1)求圍欄的長和寬;
(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且矩形其面積為8,此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點M,連接OM.下列結論:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正確的是____________________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如圖所示放置,點A1、A2、A3…在直線y=x+1上,點C1、C2、C3…在x軸上,A3的坐標是_____,則An的坐標是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com