【題目】已知BD平分∠ABF,且交AE于點D.
(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)設(shè)AP交BD于點O,交BF于點C,連接CD,當AC⊥BD時,求證:四邊形ABCD是菱形.
【答案】(1)見解析:(2)見解析.
【解析】
試題(1)根據(jù)角平分線的作法作出∠BAE的平分線AP即可;
(2)先證明△ABO≌△CBO,得到AO=CO,AB=CB,再證明△ABO≌△ADO,得到BO=DO.由對角線互相平分的四邊形是平行四邊形及有一組鄰邊相等的平行四邊形是菱形即可證明四邊形ABCD是菱形.
試題解析:(1)如圖所示:
(2)如圖:
在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形,∵AB=CB,∴平行四邊形ABCD是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調(diào)查小組設(shè)計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調(diào)查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計圖:
根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次抽樣調(diào)查中的樣本容量是 ;
(2)補全條形統(tǒng)計圖;
(3)該校共有2000名學生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為“打球”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D為AB的中點,AC=3,cosA=,將△DAC沿著CD折疊后,點A落在點E處,則BE的長為( 。
A. 5 B. 4 C. 7 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年5月19日為第29個“全國助殘日”.我市某中學組織了獻愛心捐款活動,該校數(shù)學課外活動小組對本次捐款活動做了一次抽樣調(diào)查,并繪制了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖(每組含前一個邊界,不含后一個邊界).
(1)填空:_________,_________.
(2)補全頻數(shù)分布直方圖.
(3)該校有2000名學生,估計這次活動中愛心捐款額在的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①是半徑為2的半圓,點C是弧AB的中點,現(xiàn)將半圓如圖②方式翻折,使得點C與圓心O重合,則圖中陰影部分的面積是( 。
A. B. C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調(diào)查,統(tǒng)計整理并繪制了以下兩幅不完整的統(tǒng)計圖:
請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:
(1)共抽取 名學生進行問卷調(diào)查;
(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“足球”所對應(yīng)的圓心角的度數(shù);
(3)該校共有3000名學生,請估計全校學生喜歡足球運動的人數(shù).
(4)甲乙兩名學生各選一項球類運動,請求出甲乙兩人選同一項球類運動的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明的袋子中裝有個大小、質(zhì)地都相同的乒乓球,球面上分別標有數(shù)字、、、,攪勻后先從中摸出一個球(不放回),再從余下的個球中摸出個球.
(1)用樹狀圖列出所有可能出現(xiàn)的結(jié)果;
(2)求次摸出的乒乓球球面上數(shù)字的積為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】維修一項工程,甲、乙兩隊合做,天能完成,共付工錢元,甲隊每天的工錢比乙隊多元.若兩隊獨做,乙隊工期是甲隊的倍.
(1)甲、乙兩隊獨做各需多少天完成?
(2)若兩隊獨做,哪隊工錢總額較少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在直線l上,點B在直線l外,點B關(guān)于直線l的對稱點為C,連接AC,過點B作BD⊥AC于點D,延長BD至E使BE=AB,連接AE并延長與BC的延長線交于點F.
(1)補全圖形;
(2)若∠BAC=2α,求出∠AEB的大小(用含α的式子表示);
(3)用等式表示線段EF與BC的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com