【題目】計(jì)算
(1)(-)+(+)-(-)+(-)
(2)-54×÷(-)×
(3)-29×-(-)+29×(-)
(4)(--+)÷(-)
(5)-42+3×(-2)2+(-6)÷(-)2
(6)∣-∣÷(-)-×(-4)2
【答案】(1)-4;(2)6;(3) -28;(4)26;(5)-58;(6)-7.
【解析】
(1) 運(yùn)用加法交換律進(jìn)行簡便運(yùn)算即可;
(2)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),再化除為乘,最后進(jìn)行運(yùn)算即可;
(3) 先運(yùn)用加法交換律,再用乘法結(jié)合律進(jìn)行運(yùn)算即可;
(4) 先化除為乘,然后使用乘法分配律進(jìn)行解答即可;
(5) (6)先算乘方,然后按照有理數(shù)的四則混合運(yùn)算即可.
解:(1)(-)+(+)-(-)+(-)
=[(-)-(-)]+[(+)+(-)]
=-5
=-4
(2)-54×÷(-)×
=-54××(-)×
=6
(3)-29×-(-)+29×(-)
=-29×+29×(-)-(-)
=29×(--)+
=-29+
=-28
(4)(--+)÷(-)
=(--+)×(-36)
=-×(-36)-×(-36)+×(-36)
=27+20-21
=26
(5)-42+3×(-2)2+(-6)÷(-)2
=-16+3×4+(-6)÷
=-16+12+(-6)×9
=-4-54
=-58
(6)∣-∣÷(-)-×(-4)2
=÷(-)-×16
=×(-)-×16
=--
=
=-7
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明
(1)如圖,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG∥CD(已知)
∴∠2=
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC∥
∴∠B+ =180°
又∵∠B=50°
∴∠BDE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4),請解答下列問題:
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo).
(2)畫出△A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的△A2B2C2,并寫出點(diǎn)A2的坐標(biāo).
【答案】(1)作圖見解析;點(diǎn)A1的坐標(biāo)(2,﹣4);(2)作圖見解析;點(diǎn)A2的坐標(biāo)(﹣2,4).
【解析】
試題分析:(1)分別找出A、B、C三點(diǎn)關(guān)于x軸的對稱點(diǎn),再順次連接,然后根據(jù)圖形寫出A點(diǎn)坐標(biāo);
(2)將△A1B1C1中的各點(diǎn)A1、B1、C1繞原點(diǎn)O旋轉(zhuǎn)180°后,得到相應(yīng)的對應(yīng)點(diǎn)A2、B2、C2,連接各對應(yīng)點(diǎn)即得△A2B2C2.
試題解析:(1)如圖所示:點(diǎn)A1的坐標(biāo)(2,﹣4);
(2)如圖所示,點(diǎn)A2的坐標(biāo)(﹣2,4).
考點(diǎn):1.作圖-旋轉(zhuǎn)變換;2.作圖-軸對稱變換.
【題型】解答題
【結(jié)束】
18
【題目】觀察下面的點(diǎn)陣圖和相應(yīng)的等式,探究其中的規(guī)律:
(1)認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式.
①1=1 ②1+2==3 ③1+2+3==6 ④ …
(2)結(jié)合(1)觀察下列點(diǎn)陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.
1=12②1+3=22③3+6=32④6+10=42⑤ …
(3)通過猜想,寫出(2)中與第n個(gè)點(diǎn)陣相對應(yīng)的等式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACE中,CA=CE,∠CAE=30°,⊙O經(jīng)過點(diǎn)C,且圓的直徑AB在線段AE上.
(1)試說明CE是⊙O的切線;
(2)若△ACE中AE邊上的高為h,試用含h的代數(shù)式表示⊙O的直徑AB;
(3)設(shè)點(diǎn)D是線段AC上任意一點(diǎn)(不含端點(diǎn)),連接OD,當(dāng)CD+OD的最小值為6時(shí),求⊙O的直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級三個(gè)興趣小組的同學(xué)為清遠(yuǎn)山區(qū)小朋友搬書,舞蹈小組的同學(xué)共捐書x本,美術(shù)小組的同學(xué)捐的書比舞蹈小組捐的書的2倍還多8本,科技小組的同學(xué)捐的書比美術(shù)小組捐書的一半少6本.
(1)這三個(gè)小組的同學(xué)一共捐書多少本?(用x的式子表示,并化簡)
(2)當(dāng)x=10時(shí),這三個(gè)小組的同學(xué)一共捐書多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC、BD交于點(diǎn)O,已知O是AC的中點(diǎn),AE=CF,DF∥BE.
(1)求證:△BOE≌△DOF;
(2)若OD=OC,則四邊形ABCD是什么特殊四邊形?請直接給出你的結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y1=kx+b與y2=x+a的圖象如圖,則下列結(jié)論:①k<0;②a>0;③關(guān)于x的方程kx﹣x=a﹣b的解是x=3;④當(dāng)x<3時(shí),y1<y2中.則正確的序號有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察圖,回答下列問題
(1)在圖①中有幾個(gè)角?
(2)在圖②中有幾個(gè)角?
(3)在圖③中有幾個(gè)角?
(4)以此類推,如圖④所示,若一個(gè)角有n條射線,此時(shí)共有多少個(gè)角?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com