【題目】完成下面的證明

1)如圖,FGCD,∠1=∠3,∠B50°,求∠BDE的度數(shù).

解:∵FGCD(已知)

∴∠2   

又∵∠1=∠3

∴∠3=∠2(等量代換)

BC   

∴∠B+   180°   

又∵∠B50°

∴∠BDE   

【答案】1;DE;∠BDE;兩直線平行,同旁內(nèi)角互補;130°

【解析】

FGCD可得出∠2=∠1,結(jié)合∠1=∠3可得出∠3=∠2,利用內(nèi)錯角相等,兩直線平行可得出BCDE,再利用兩直線平行,同旁內(nèi)角互補結(jié)合∠B50°即可求出∠BDE的度數(shù).

解:∵FGCD(已知),

∴∠2=∠1

又∵∠1=∠3,

∴∠3=∠2(等量代換),

BCDE,

∴∠B+BDE180°(兩直線平行,同旁內(nèi)角互補).

又∵∠B50°,

∴∠BDE130°

故答案為:∠1DE;∠BDE;兩直線平行,同旁內(nèi)角互補;130°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和直線CD相交于點O,OF平分∠COE,過點OOGOF.

1)若∠AOE=80°,∠COF=22°,則∠BOD= ;

2)若∠COE=40°,試說明:OG平分∠DOE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算的值為( )

A. 5048B. 50C. 4950D. 5050

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地要建造一個圓形噴水池,在水池中央垂直于地面安裝一個柱子OA,O恰為水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下.在過OA的任一平面上,建立平面直角坐標(biāo)系(如圖),水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式是,則下列結(jié)論:(1)柱子OA的高度為3m;(2)噴出的水流距柱子1m處達到最大高度;(3)噴出的水流距水平面的最大高度是4m;(4)水池的半徑至少要3m才能使噴出的水流不至于落在池外.其中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師在黑板上書寫了一個正確的演算過程,隨后用手掌捂住了一個多項式,形式如下:

(1)求所捂的多項式;

(2)x為正整數(shù),任取x的幾個值并求出所捂多項式的值,你能發(fā)現(xiàn)什么規(guī)律?

(3)若所捂多項式的值為144,請直接寫出正整數(shù)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD邊長為3,點EAB邊上且BE=1,點P,Q分別是邊BCCD的動點(均不與頂點重合),當(dāng)四邊形AEPQ的周長取最小值時,四邊形AEPQ的面積是(  )

A. 3 B. 5 C. 4 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知單位長度為1的方格中有三角形ABC.

1)請畫出三角形ABC向上平移3格再向右平移2格后所得到的三角形A′B′C′;

2)請以點A為坐標(biāo)原點建立平面直角坐標(biāo)系(在圖中畫出),然后寫出點B,B′的坐標(biāo);

3)求出三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0

(1)證明:無論m為何值方程都有兩個實數(shù)根;

(2)是否存在正數(shù)m,使方程的兩個實數(shù)根的平方和等于26?若存在,求出滿足條件的正數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

1)(-)+(+)-(-)+(-

2)-54×÷(-)×

3)-29×-(-)+29×(-

4)(-)÷(-

5)-423×(-22+(-6)÷(-2

6)∣-∣÷()-×(-42

查看答案和解析>>

同步練習(xí)冊答案