【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析.
【解析】分析:(1)由BC⊥AC,DE⊥BC,得到DE∥AC,從而判斷出四邊形ADEC是平行四邊形.即可,
(2)先判斷出△BFD≌△CFE,再判斷出BC和DE垂直且互相平分,得到四邊形BECD是菱形.
(3)先判斷出∠CDB=90°,從而得到有一個角是直角的菱形是正方形.
解析:(1)證明:∵直線m∥AB,
∴EC∥AD.
又∵∠ACB=90°,
∴BC⊥AC.
又∵DE⊥BC,
∴DE∥AC.
∵EC∥AD,DE∥AC,
∴四邊形ADEC是平行四邊形.
∴CE=AD.
(2)當點D是AB中點時,四邊形BECD是菱形.
證明:∵ D是AB中點,
∴DB=DA
又∵直線m∥AB,CE=AD
∴DB= CE,DB ∥ CE
∴四邊形BDCE是平行四邊形
又∵DE⊥BC
∴四邊形BECD是菱形
(3)當∠A的大小是45°時,四邊形BECD是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】某校校園內有一個大正方形花壇,如圖甲所示,它由四個邊長為3米的小正方形組成,且每個小正方形的種植方案相同.其中的一個小正方形ABCD如圖乙所示,DG=1米,AE=AF=x米,在五邊形EFBCG區(qū)域上種植花卉,則大正方形花壇種植花卉的面積y與x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中正確的有( 。
①相等的角是對頂角.
②在同一平面內,若a∥b,b∥c,則a∥c.
③若點P(m+3,m+1)在x軸上,則點P的坐標為(4,0).
④數(shù)軸上每一個點都表示唯一一個實數(shù).
⑤若a大于0,b不大于0,則點P(-a,-b)在第三象限.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,射線分別和直線交于點,射線分別和直線交于點,點在射線上運動(點與三點不重合),設,,.
(1)如果點在兩點之間運動時,之間有何數(shù)量關系?請說明理由;
(2)如果點在兩點之外運動時,之間有何數(shù)量關系?(只需寫出結論,不必說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,直線AB∥CD
(1)如圖1,點E在直線BD的左側,猜想∠ABE、∠CDE、∠BED的數(shù)量關系,并證明你的結論;
(2)如圖2,點E在直線BD的左側,BF、DF分別平分∠ABE、∠CDE,猜想∠BFD和∠BED的數(shù)量關系,并證明你的結論;
(3)如圖3,點E在直線BD的右側,BF、DF分別平分∠ABE、∠CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關系的猜想是否仍成立?如果成立,請證明;如果不成立,請寫出你的猜想,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】五月初,我市多地遭遇了持續(xù)強降雨的惡劣天氣,造成部分地區(qū)出現(xiàn)嚴重洪澇災害,某愛心組織緊急籌集了部分資金,計劃購買甲、乙兩種救災物品共2000件送往災區(qū),已知每件甲種物品的價格比每件乙種物品的價格貴10元,用350元購買甲種物品的件數(shù)恰好與用300元購買乙種物品的件數(shù)相同
(1)求甲、乙兩種救災物品每件的價格各是多少元?
(2)經調查,災區(qū)對乙種物品件數(shù)的需求量是甲種物品件數(shù)的3倍,若該愛心組織按照此需求的比例購買這2000件物品,需籌集資金多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,AB>AD,AE,BE,CM,DM分別為∠DAB,∠ABC,∠BCD,∠CDA的平分線,AE與DM相交于點F,BE與CM相交于點N,連接EM.若ABCD的周長為42cm,F(xiàn)M=3cm,EF=4cm,則EM= cm,AB= cm.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com