【題目】如圖,一次函數(shù)為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點(diǎn).

(1)求一次函數(shù)的表達(dá)式;

(2)若將直線向下平移個(gè)單位長度后與反比例函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求的值.

【答案】(1)(2)1或9.

【解析】

試題(1)一次函數(shù)為常數(shù),且)的圖像與反比例函數(shù)的圖像交于

由根據(jù)點(diǎn)在曲線上點(diǎn)的坐標(biāo)滿足方程的關(guān)系,將代入兩解析式聯(lián)立求解即可.

(2)根據(jù)直線平移的性質(zhì)得到平移后的解析式,與反比例函數(shù)解析式聯(lián)立,消去y,得到關(guān)于x的一元二次方程,由二者只有一個(gè)公共點(diǎn)知該一元二次方程有兩相等的實(shí)數(shù)根,從而根據(jù)根的判別式=0求解即可.

試題解析:(1)一次函數(shù)為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,

,解得:.

一次函數(shù)為:

(2)將直線向下平移個(gè)單位長度后,直線為:,

,化為:,

Δ=(5-m)2-16=0,解得:m=1或9.

m=1或9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)是二次函數(shù).

的值;

寫出這個(gè)二次函數(shù)圖象的對(duì)稱軸:________,頂點(diǎn)坐標(biāo):________;

求圖象與軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,DBC邊上一點(diǎn),EAC邊上一點(diǎn),且∠ADE=60°.

(1)求證:△ABD∽△DCE;

(2)若BD=3,CE=2,求△ABC的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,若∠ABC=30°,C=45°,ED=,點(diǎn)HBD上的一個(gè)動(dòng)點(diǎn),則HG+HC的最小值為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形ABC中,∠BAC=90°,(AC>AB),在邊AC上取一點(diǎn)D,使得BD=CD,點(diǎn)E、F分別是線段BC、BD的中點(diǎn),連接AFEF,作∠FEM=FDC,交AC于點(diǎn)M,如圖1所示.

(1)請(qǐng)判斷四邊形EFDM是什么特殊的四邊形,并證明你的結(jié)論;

(2)將∠FEM繞點(diǎn)E順時(shí)針旋轉(zhuǎn)到∠GEN,交線段AF于點(diǎn)G,交AC于點(diǎn)N,如圖2所示,請(qǐng)證明:EG=EN;

(3)在第(2)條件下,若點(diǎn)GAF中點(diǎn),且∠C=30°,AB=3,如圖3,求GE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個(gè)結(jié)論:①△APE≌△CPF;AE=CF;③△EAF是等腰直角三角形;④SABC=2S四邊形AEPF,上述結(jié)論正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C,D兩點(diǎn).點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn).

(1)求此拋物線的解析式;

(2)當(dāng)PA+PB的值最小時(shí),求點(diǎn)P的坐標(biāo);

(3)拋物線上是否存在一點(diǎn)Q(QB不重合),使CDQ的面積等于BCD的面積?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,王老師布置如下任務(wù):

如圖1,直線MN外一點(diǎn)A,過點(diǎn)A作直線MN的平行線.

(1)小路的作法如下:

MN上任取一點(diǎn)B,作射線BA;

B為圓心任意長為半徑畫弧,分別交BAMNC、D兩點(diǎn)(點(diǎn)D位于BA的左側(cè)),再以A為圓心,相同的長度為半徑畫弧EH,交BA于點(diǎn)E(點(diǎn)E位于點(diǎn)A上方);

③以E為圓心CD的長為半徑畫弧,交弧EH于點(diǎn)FF點(diǎn)位于BA左側(cè))

④作直線AF

⑤直線AF即為所求作平行線.

請(qǐng)你根據(jù)小路同學(xué)的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊(yùn)含的數(shù)學(xué)依據(jù):

(2)請(qǐng)你參考小路的作法,利用圖2再設(shè)計(jì)一種過點(diǎn)AMN的平行線的尺規(guī)作圖過程(保留作圖痕跡),并說明其中蘊(yùn)含的數(shù)學(xué)依據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABD,△ACE都是等邊三角形,BEDC相交于點(diǎn)F,連接AF

1)求證:BEDC;

2)求證:AF平分∠DFE

查看答案和解析>>

同步練習(xí)冊(cè)答案