【題目】如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°.
(1)求證:△ABD∽△DCE;
(2)若BD=3,CE=2,求△ABC的邊長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)9.
【解析】試題分析:(1)由△ABC為等邊三角形,得到∠B=∠C=60°,故有∠ADB+∠BAD=120°,由∠ADB+∠CDE=120°,得到∠BAD=∠CDE ,故△ABD∽△DCE;
(2)由△ABD∽△DCE,得到,設(shè)等邊三角形邊長(zhǎng)為,則,解出即可.
試題解析:(1)∵△ABC為等邊三角形,∴∠B=∠C=60°,∴∠ADB+∠BAD=120°,∵∠ADB+∠CDE=120°,∴∠BAD=∠CDE ,∴△ABD∽△DCE;
(2)∵△ABD∽△DCE,∴,設(shè)等邊三角形邊長(zhǎng)為,則,解得,即等邊三角形邊長(zhǎng)為9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=ax+b(a、b是常數(shù),a≠0)函數(shù)圖象經(jīng)過(guò)(﹣1,4),(2,﹣2)兩點(diǎn),下面說(shuō)法中:(1)a=2,b=2;(2)函數(shù)圖象經(jīng)過(guò)(1,0);(3)不等式ax+b>0的解集是x<1;(4)不等式ax+b<0的解集是x<1;正確的說(shuō)法有____________________.(請(qǐng)寫出所有正確說(shuō)法的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)(a≠0)的圖象與x軸交于點(diǎn)A(-1,0),與y軸的交點(diǎn)B在(0,-2)和(0,-1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc>0;②4a+2b+c>0;③4ac-b2<16a;④<a<;⑤b>c.其中正確結(jié)論個(gè)數(shù)( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c與直線y=﹣x+6分別交于x軸和y軸上同一點(diǎn),交點(diǎn)分別是點(diǎn)B和點(diǎn)C,且拋物線的對(duì)稱軸為直線x=4.
(1)求出拋物線與x軸的兩個(gè)交點(diǎn)A,B的坐標(biāo).
(2)試確定拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形中,,為邊上中點(diǎn),過(guò)點(diǎn)作,交于,交于,若,則的長(zhǎng)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90,AC=BC=1,E、F為線段AB上兩動(dòng)點(diǎn),且∠ECF=45°,過(guò)點(diǎn)E、F分別作BC、AC的垂線相交于點(diǎn)M,垂足分別為H、G.現(xiàn)有以下結(jié)論:①AB=;②當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),MH=;③AF+BE=EF;④MGMH=,其中正確結(jié)論為( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y= .
(1)寫出此二次函數(shù)圖象的對(duì)稱軸;
(2)在如圖中建立平面直角坐標(biāo)系,并畫出該函數(shù)的圖象.(列表、描點(diǎn)、連線)
(3)結(jié)合圖象回答問(wèn)題:
①當(dāng)x的取值范圍是 時(shí),y≤0?
②將此拋物線向 平移 個(gè)單位時(shí),它與x軸有且只有一個(gè)公共點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,猜想:四邊形DFBE是什么特殊的四邊形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形組成的的方格中,和的頂點(diǎn)都在格點(diǎn)上,且.利用平移、旋轉(zhuǎn)變換,能使通過(guò)一次或兩次變換后與完全重合.
(1)請(qǐng)你寫出通過(guò)兩次變換與完全重合的變換過(guò)程.
(2)通過(guò)一次旋轉(zhuǎn)就能得到.請(qǐng)?jiān)趫D中標(biāo)出旋轉(zhuǎn)中心,并簡(jiǎn)要說(shuō)明你是如何確定的.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com