【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直角三角形AOB的直角頂點(diǎn)B在x軸正半軸上,點(diǎn)A在第一象限,OB=2,tan∠AOB=2.
(1)求圖象經(jīng)過(guò)點(diǎn)A的反比例函數(shù)的解析式;
(2)點(diǎn)C是(1)中反比例函數(shù)圖象上一點(diǎn),連接OC交AB于點(diǎn)D,連接AC,若D為OC中點(diǎn),求△ADC的面積.
【答案】(1)y=;(2)3
【解析】
(1)依據(jù)tan∠AOB=2,即可得到AB=2OB=4,進(jìn)而得出點(diǎn)A的坐標(biāo)為(2,4),利用待定系數(shù)法即可得出反比例函數(shù)的解析式;
(2)過(guò)C作CE⊥x軸于E,則BD∥CE,依據(jù)△OBD∽△OEC,即可得到AD=AB﹣BD=4﹣1=3,BE=2,進(jìn)而得出S△ACD=AD×BE=3.
解:(1)∵直角三角形AOB的直角頂點(diǎn)B在x軸正半軸上,點(diǎn)A在第一象限,OB=2,tan∠AOB=2,
∴AB=2OB=4,
∴點(diǎn)A的坐標(biāo)為(2,4),
設(shè)經(jīng)過(guò)點(diǎn)A的反比例函數(shù)的解析式為y=,
則k=2×4=8,
∴y=.
(2)如圖所示,過(guò)C作CE⊥x軸于E,則BD∥CE,
∴△OBD∽△OEC,
∵D是CO的中點(diǎn),
∴===,
∴OE=2OB=4,CE=2BD=2,
∴BD=1,AD=AB﹣BD=4﹣1=3,BE=2,
∴S△ACD=AD×BE=×3×2=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,是邊上的動(dòng)點(diǎn)(不與點(diǎn)重合),將沿所在的直線翻折,得到,連接,則下列判斷:
①當(dāng)時(shí),
②當(dāng)時(shí),
③當(dāng)時(shí),;
④長(zhǎng)度的最小值是1.
其中正確的判斷是______(填入正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=﹣x+b(b>0)交x軸,y軸于點(diǎn)M,N,點(diǎn)A,B是OM,ON上的點(diǎn),以AB為邊作正方形ABCD,CD恰好落在MN上,已知AB=2,則b的值為( 。
A.1+B.C.D.2+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的直徑,是的弦,過(guò)點(diǎn)作的切線交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)作,垂足為,與交于點(diǎn),設(shè),的度數(shù)分別是,,且.
(1)用含的代數(shù)式表示;
(2)連結(jié)交于點(diǎn),若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂(lè)獎(jiǎng).
(1)從獲得美術(shù)獎(jiǎng)和音樂(lè)獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;
(2)分別從獲得美術(shù)獎(jiǎng)、音樂(lè)獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹(shù)狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(0,)為圓心,以長(zhǎng)為半徑作M交x軸于A.B兩點(diǎn),交y軸于C.D兩點(diǎn),連接AM并延長(zhǎng)交M于P點(diǎn),連接PC交x軸于E.
(1)求點(diǎn)C.P的坐標(biāo);
(2)求證:BE=2OE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的圖象經(jīng)過(guò)點(diǎn)A(2,-8),求:
(1)該拋物線的解析式;
(2)判斷點(diǎn)B(3,-18)是否在該拋物線上;
(3)求出此拋物線上縱坐標(biāo)是-50的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷(xiāo)售一種商品,成本價(jià)為50元/千克,規(guī)定每千克售價(jià)不低于成本價(jià),且不高于85元.經(jīng)過(guò)市場(chǎng)調(diào)查,該商品每天的銷(xiāo)售量(千克)與售價(jià)(元/千克)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)(元/千克) | 50 | 60 | 70 |
銷(xiāo)售量(千克) | 120 | 100 | 80 |
(1)求與之間的函數(shù)表達(dá)式.
(2)設(shè)該商品每天的總利潤(rùn)為(元),則當(dāng)售價(jià)定為多少元/千克時(shí),超市每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少元?
(3)如果超市要獲得每天不低于1600元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品的售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E兩點(diǎn)分別在AC,BC上,且DE∥AB,將△CDE繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn):當(dāng)α=0°時(shí),的值為 ;
(2)拓展探究:當(dāng)0°≤α<360°時(shí),若△EDC旋轉(zhuǎn)到如圖2的情況時(shí),求出的值;
(3)問(wèn)題解決:當(dāng)△EDC旋轉(zhuǎn)至A,B,E三點(diǎn)共線時(shí),若設(shè)CE=5,AC=4,直接寫(xiě)出線段BE的長(zhǎng) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com