【題目】如圖,已知的直徑,是的弦,過點(diǎn)作的切線交的延長線于點(diǎn),過點(diǎn)作,垂足為,與交于點(diǎn),設(shè),的度數(shù)分別是,,且.
(1)用含的代數(shù)式表示;
(2)連結(jié)交于點(diǎn),若,求的長.
【答案】(1);(2)
【解析】
(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥DE,可以證明AD∥OC,根據(jù)平行線的性質(zhì)可得,則根據(jù)等腰三角形的性質(zhì)可得,利用,化簡計(jì)算即可得到答案;
(2)連接CF,根據(jù),可得,利用中垂線和等腰三角形的性質(zhì)可證四邊形是平行四邊形,得到△AOF為等邊三角形,由并可得四邊形是菱形,可證是等邊三角形,有∠FAO=60°,再根據(jù)弧長公式計(jì)算即可.
解:(1)如圖示,連結(jié),
∵是的切線,∴.
又,∴,
∴,
∴.
∵,
∴.∴.
∵,
∴.
∴,即.
(2)如圖示,連結(jié),
∵,,
∴,
∴,
∴,
∴,
∵,
∴四邊形是平行四邊形,
∵,
∴四邊形是菱形,
∴,
∴是等邊三角形,
∴,
∴,
∵,
∴的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每到春夏交替時(shí)節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
治理?xiàng)钚跻灰荒x哪一項(xiàng)?(單選)
A.減少楊樹新增面積,控制楊樹每年的栽種量
B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹
C.選育無絮楊品種,并推廣種植
D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮
E.其他
根據(jù)以上統(tǒng)計(jì)圖,解答下列問題:
(1)本次接受調(diào)查的市民共有 人;
(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是 ;
(3)請補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有90萬人,請估計(jì)贊同“選育無絮楊品種,并推廣種植”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點(diǎn),M是BC邊上的動點(diǎn)點(diǎn)M不與B,C重合,,CN與AB交于點(diǎn)N,連接OM,ON,下列五個(gè)結(jié)論:≌;≌;∽;;若,則的最小值是,其中正確結(jié)論的個(gè)數(shù)是
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)決定開展課后服務(wù)活動,學(xué)校就“你最想開展哪種課后服務(wù)項(xiàng)目”問題進(jìn)行了隨機(jī)問卷調(diào)查,調(diào)查分為四個(gè)類別:.舞蹈;.繪畫與書法;.球類;.不想?yún)⒓樱F(xiàn)根據(jù)調(diào)查結(jié)果整理并繪制成如下不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,請結(jié)合圖中所給信息解答下列問題:
(1)這次統(tǒng)計(jì)共抽查了_________名學(xué)生,請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校共有600名學(xué)生,根據(jù)以上信息,請你估計(jì)全校學(xué)生中想?yún)⒓?/span>類活動的人數(shù);
(3)若甲、乙兩名同學(xué),各自從三個(gè)項(xiàng)目中隨機(jī)選一個(gè)參加,請用列表或畫樹狀圖的方法求他們選中同一項(xiàng)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形 中,點(diǎn)是射線 上一個(gè)動點(diǎn).連接,,點(diǎn),分別為,的中點(diǎn),連接交于點(diǎn).
(1)如圖 1,當(dāng)點(diǎn)在線段 的延長線上時(shí),請判斷的形狀,并說明理由.
(2)如圖 2,正方形 的邊長為 4,點(diǎn)與點(diǎn) 關(guān)于直線 對稱,且點(diǎn)在線段 上.連接,若點(diǎn) 恰好在直線上,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°.
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標(biāo)明字母)
①作線段AC的垂直平分線l,交AC于點(diǎn)O;
②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;
③連接DA、DC.
(2)判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直角三角形AOB的直角頂點(diǎn)B在x軸正半軸上,點(diǎn)A在第一象限,OB=2,tan∠AOB=2.
(1)求圖象經(jīng)過點(diǎn)A的反比例函數(shù)的解析式;
(2)點(diǎn)C是(1)中反比例函數(shù)圖象上一點(diǎn),連接OC交AB于點(diǎn)D,連接AC,若D為OC中點(diǎn),求△ADC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),過點(diǎn)A作AC垂直x軸于點(diǎn)C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點(diǎn)D,使△ABD為直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知⊙O是△ABC的外接圓,AB為⊙O的直徑,AC=6cm,BC=8cm.
(1)求⊙O的半徑;
(2)請用尺規(guī)作圖作出點(diǎn)P,使得點(diǎn)P在優(yōu)弧CAB上時(shí),△PBC的面積最大,請保留作圖痕跡,并求出△PBC面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com