【題目】如圖,已知菱形ABCD中,DE⊥AB于點E,DE = 4cm,∠A =45°,求菱形ABCD的面積和梯形DEBC的中位線長(精確到0.1cm)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為5,點A的坐標為(﹣4,0),點B在y軸上,若反比例函數(shù)(k≠0)的圖象過點C,則該反比例函數(shù)的表達式為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形的頂點與坐標原點重合,其邊長為2,點,點分別在軸, 軸的正半軸上.函數(shù)的圖像與交于點,函數(shù)為常數(shù), )的圖像經(jīng)過點,與交于點,與函數(shù)的圖像在第三象服內交于點,連接.
(1)求函數(shù)的表達式,并直接寫出兩點的坐標;
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩船從港口A同時出發(fā),甲船以30海里/時的速度向北偏東35°的方向航行,乙船以40海里/時的速度向另一方向航行,2小時后,甲船到達C島,乙船到達B島,若C,B兩島相距100海里,則乙船航行的方向是南偏東多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用“>”或“<”填空.
(1) 3.4 _____0 (2) 0 ______-22. 8
(3 ) -3______-4 (4) -______-0.3
(5) -0. 66_____- (6) -______-3.14
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們運用圖(Ⅰ)中大正方形的面積可表示為(a+b)2,也可表示為c3+4(ab),即(a+b)2=c2+4(ab)由此推導出一個重要的結論a2+b2=c2,這個重要的結論就是著名的“勾股定理”.這種根據(jù)圖形可以極簡單地直觀推論或驗證數(shù)學規(guī)律和公式的方法,簡稱“無字證明”.
(1)請你用圖(Ⅱ)(2002年國際數(shù)學家大會會標)的面積表達式驗證勾股定理(其中四個直角三角形的較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c).
(2)請你用(Ⅲ)提供的圖形進行組合,用組合圖形的面積表達式驗證:(x+2y)2=x2+4xy+4y2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AM∥CN,點B為平面內一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系________;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com