【題目】如圖,已知菱形ABCD中,DEAB于點E,DE = 4cm,A =45°,求菱形ABCD的面積和梯形DEBC的中位線長(精確到0.1cm

【答案】菱形ABCD的面積是22.7cm,梯形DEBC的中位線長是3.7cm.

【解析】:∵四邊形ABCD是菱形,

∴AD=DC=AB,

∵DE⊥AB,

∴∠AED=90°,

∵∠A=45°,

△ADE是等腰直角三角形,∴AE=DE=4,

由勾股定理得,AD=,

AB=,

菱形ABCD的面積為DE×AB=4×=≈22.7cm,

BE=-4,CD=AD=,

梯形DEBC的中位線長-4+÷2=-2≈3.7cm.

菱形ABCD的面積是22.7cm,梯形DEBC的中位線長是3.7cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為5,點A的坐標為(﹣4,0),點By軸上,若反比例函數(shù)k0)的圖象過點C,則該反比例函數(shù)的表達式為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形的頂點與坐標原點重合,其邊長為2,點,點分別在軸, 軸的正半軸上.函數(shù)的圖像與交于點,函數(shù)為常數(shù), )的圖像經(jīng)過點,與交于點,與函數(shù)的圖像在第三象服內交于點,連接.

(1)求函數(shù)的表達式,并直接寫出兩點的坐標;

(2)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲、乙兩船從港口A同時出發(fā)甲船以30海里/時的速度向北偏東35°的方向航行乙船以40海里/時的速度向另一方向航行,2小時后,甲船到達C乙船到達B,C,B兩島相距100海里,則乙船航行的方向是南偏東多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B、C在半徑為9的⊙O上, 弧AB的長為2π , 則∠ACB的大小是.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD的對角線AC的垂直平分線與邊AD、BC分別相交于點E、F.

求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“>”“<”填空

(1) 3.4 _____0 (2) 0 ______-22. 8

(3 ) -3______-4 (4) -______-0.3

(5) -0. 66_____- (6) -______-3.14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們運用圖(Ⅰ)中大正方形的面積可表示為(a+b)2,也可表示為c3+4(ab),即(a+b)2=c2+4(ab)由此推導出一個重要的結論a2+b2=c2,這個重要的結論就是著名的勾股定理.這種根據(jù)圖形可以極簡單地直觀推論或驗證數(shù)學規(guī)律和公式的方法,簡稱無字證明”.

(1)請你用圖(Ⅱ)(2002年國際數(shù)學家大會會標)的面積表達式驗證勾股定理(其中四個直角三角形的較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c).

(2)請你用(Ⅲ)提供的圖形進行組合,用組合圖形的面積表達式驗證:(x+2y)2=x2+4xy+4y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AM∥CN,點B為平面內一點,AB⊥BC于B.

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系________;

(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;

(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).

查看答案和解析>>

同步練習冊答案