【題目】我們運(yùn)用圖(Ⅰ)中大正方形的面積可表示為(a+b)2,也可表示為c3+4(ab),即(a+b)2=c2+4(ab)由此推導(dǎo)出一個(gè)重要的結(jié)論a2+b2=c2,這個(gè)重要的結(jié)論就是著名的“勾股定理”.這種根據(jù)圖形可以極簡(jiǎn)單地直觀推論或驗(yàn)證數(shù)學(xué)規(guī)律和公式的方法,簡(jiǎn)稱“無字證明”.
(1)請(qǐng)你用圖(Ⅱ)(2002年國際數(shù)學(xué)家大會(huì)會(huì)標(biāo))的面積表達(dá)式驗(yàn)證勾股定理(其中四個(gè)直角三角形的較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c).
(2)請(qǐng)你用(Ⅲ)提供的圖形進(jìn)行組合,用組合圖形的面積表達(dá)式驗(yàn)證:(x+2y)2=x2+4xy+4y2.
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)陰影部分面積由大正方形面積減去小正方形面積,也可以由四個(gè)直角三角形面積之和求出,兩者相等即可得證;
(2)拼成如圖所示圖形,根據(jù)大正方形邊長為x+2y,表示出正方形面積,再由兩個(gè)小正方形與兩個(gè)矩形面積之和求出,即可驗(yàn)證.
試題解析:(1)S陰影=4×ab,S陰影=c2-(a-b)2,
∴4×ab=c2-(a-b)2,即2ab=c2-a2+2ab-b2,
則a2+b2=c2;
(2)如圖所示,
大正方形的面積為x2+4y2+4xy,也可以為(x+2y)2,
則(x+2y)2=x2+4xy+4y2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了考察甲、乙兩種成熟期小麥的株高長勢(shì)情況,現(xiàn)從中隨機(jī)抽取6株,并測(cè)得它們的株高(單位:cm)如下表所示:
甲 | 63 | 66 | 63 | 61 | 64 | 61 |
乙 | 63 | 65 | 60 | 63 | 64 | 63 |
(Ⅰ)請(qǐng)分別計(jì)算表內(nèi)兩組數(shù)據(jù)的方差,并借此比較哪種小麥的株高長勢(shì)比較整齊?
(Ⅱ)現(xiàn)將進(jìn)行兩種小麥優(yōu)良品種雜交實(shí)驗(yàn),需從表內(nèi)的甲、乙兩種小麥中,各隨機(jī)抽取一株進(jìn)行配對(duì),以預(yù)估整體配對(duì)情況,請(qǐng)你用列表法或畫樹狀圖的方法,求所抽取的兩株配對(duì)小麥株高恰好都等于各自平均株高的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD中,DE⊥AB于點(diǎn)E,DE = 4cm,∠A =45°,求菱形ABCD的面積和梯形DEBC的中位線長(精確到0.1cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)幾何體由幾個(gè)棱長均為1的小正方體搭成,從上面看到的幾何體的形狀圖如圖(1)所示,正方形中的數(shù)字表示該位置的小正方體的個(gè)數(shù).
(1)請(qǐng)?jiān)趫D(2)的方格紙中畫出從正面看和從左面看到的幾何體的形狀圖;
(2)根據(jù)從三個(gè)方向看到的幾何體的形狀圖,請(qǐng)你計(jì)算該幾何體的表面積為________平方單位(包含底面);
(3)若從上面看到的幾何體的形狀圖不變,幾何體各位置的小正方體的個(gè)數(shù)可以改變,則搭成這樣的幾何體的表面積最大為________平方單位(包含底面).
圖(1) 圖(2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)(4,m)在反比例函數(shù)(x≠0)的圖象上,則m的值是 .
【答案】2
【解析】∵點(diǎn)(4,m)在反比例函數(shù)y=(x≠0)的圖象上,
∴m=8÷4,解得m=2.
故答案為:2.
【題型】填空題
【結(jié)束】
12
【題目】如上圖,反比例函數(shù)的圖象位于第一、三象限,其中第一象限內(nèi)的圖象經(jīng)過點(diǎn)A(1,2),請(qǐng)?jiān)诘谌笙迌?nèi)的圖象上找一個(gè)你喜歡的點(diǎn)P,你選擇的P點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,AC=3,BC=4.如果以點(diǎn)C為圓心,r為半徑的圓與斜邊AB只有一個(gè)公共點(diǎn),求半徑r的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,則下列敘述不正確的是( )
A. 點(diǎn)O不在直線AC上
B. 射線AB與射線BC是指同一條射線
C. 圖中共有5條線段
D. 直線AB與直線CA是指同一條直線
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com