【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx3的圖象在第一象限內(nèi)相交于點A,且點A的橫坐標為4

1)求點A的坐標及一次函數(shù)的解析式;

2)若直線x=2與反比例函數(shù)和一次函數(shù)的圖象分別交于點BC,求線段BC的長.

【答案】(1)A(4,1),一次函數(shù)的解析式為y=x﹣3;(2)線段BC的長為3.

【解析】1)根據(jù)點點A在反比例函數(shù)y=的圖像上,且橫坐標為4,代入即可求得點A的縱坐標;把點A的坐標代入y=kx3代入即可求得一次函數(shù)的解析式。

2)把點B、點C的橫坐標分別代入雙曲線、一次函數(shù)的解析式求得縱坐標,由縱坐標相減即可得BC的長。

解:(1)∵點A (4,m)在反比例函數(shù)y=的圖象上,

∴m==1,

∴A(4,1),

把A(4,1)代入一次函數(shù)y=kx﹣3,得4k﹣3=1,

∴k=1,

∴一次函數(shù)的解析式為y=x﹣3;

(2)∵直線x=2與反比例和一次函數(shù)的圖象分別交于點B、C,

∴當x=2時,yB==2,

yC=2﹣3=﹣1,

∴線段BC的長為|yB﹣yC|=2﹣(﹣1)=3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,ABC三個頂點的坐標分別是A(2,2)、B(2,0),C(4,2).

(1)在平面直角坐標系中畫出△ABC;
(2)若將(1)中的△ABC平移,使點B的對應(yīng)點B′坐標為(6,2),畫出平移后的△A′B′C′;
(3)求△A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,為邊上一點,為邊的中點,過點,交的延長線于點,連結(jié)

1)求證:四邊形是平行四邊形;

2)若點為邊的中點,當線段BC與線段AC滿足什么數(shù)量關(guān)系時,四邊形為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是等邊三角形,點D、E分別在AC、BC上,且CD=BE,

(1)求證:ABE≌△BCD;

(2)求出AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,電線桿CD上的C處引拉線CE,CF固定電線桿,在離電線桿6米的B處安置測角儀(點B,E,D在同一直線上),在A處測得電線桿上C處的仰角為30°,已知測角儀的高AB=1.5米,BE=2.3米,求拉線CE的長,(精確到0.1米)參考數(shù)據(jù)1.41,1.73.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD,AB=6,DAB=60°,AE分別交BC、BD于點E、F,CE=2,連接CF.以下結(jié)論:①∠BAF=BCF; ②點EAB的距離是2; SCDF:SBEF=9:4; tanDCF=3/7. 其中正確的有()

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的圖象刻畫了“龜兔再次賽跑”的故事(表示烏龜從起點出發(fā)所行的時間,表示烏龜所行的路程,表示兔子所行的路程).

①“龜兔再次賽跑”的路程為______米;

②兔子比烏龜晚出發(fā)______分鐘;

③烏龜在途中休息了______分鐘;

④烏龜?shù)乃俣仁?/span>______/分;

⑤兔子的速度是______/分;

⑥兔子在距起點______米處追上烏龜.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】珠海市水務(wù)局對某小區(qū)居民生活用水情況進行了調(diào)査.隨機抽取部分家庭進行統(tǒng)計,繪制成如下尚未完成的頻數(shù)分布表和頻率分布直方圖.請根據(jù)圖表,解答下列問題:

月均用水量(單位:噸

頻數(shù)

頻率

2≤x3

4

0.08

3≤x4

a

b

4≤x5

14

0.28

5≤x6

9

c

6≤x7

6

0.12

7≤x8

5

0.1

合計

d

1.00

1b= ,c= ,并補全頻數(shù)分布直方圖;

2)為鼓勵節(jié)約用水用水,現(xiàn)要確定一個用水量標準P(單位:噸),超過這個標準的部分按1.5倍的價格收費,若要使60%的家庭水費支出不受影響,則這個用水量標準P= 噸;

3)根據(jù)該樣本,請估計該小區(qū)400戶家庭中月均用水量不少于5噸的家庭約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙OAB于點D,過點DDE⊥AC于點E,交BC的延長線于點F

求證:

1AD=BD;

2DF⊙O的切線.

查看答案和解析>>

同步練習(xí)冊答案