【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線(xiàn).
【答案】(1)證法一:連結(jié)CD,
∵BC為⊙O的直徑
∴CD⊥AB
∵AC=BC
∴AD=BD.
證法二:連結(jié)CD,
∵BC為⊙O的直徑
∴∠ADC=∠BDC=90°
∵AC=BC,CD=CD
∴△ACD≌△BCD
∴AD=BD
(2)證法一:連結(jié)OD,
∵AD=BD,OB=OC
∴OD∥AC
∵DE⊥AC
∴DF⊥OD
∴DF是⊙O的切線(xiàn).
證法二:連結(jié)OD,
∵OB=OD
∴∠BDO=∠B
∵∠B=∠A
∴∠BDO=∠A
∵∠A+∠ADE=90°
∴∠BDO+∠ADE=90°
∴∠ODF=90°
∴DF是⊙O的切線(xiàn).
【解析】試題分析:(1)由于AC=AB,如果連接CD,那么只要證明出CD⊥AB,根據(jù)等腰三角形三線(xiàn)合一的特點(diǎn),我們就可以得出AD=BD,由于BC是圓的直徑,那么CD⊥AB,由此可證得.
(2)連接OD,再證明OD⊥DE即可.
試題解析:(1)連接CD,
∵BC為⊙O的直徑,
∴CD⊥AB.
∵AC=BC,
∴AD=BD.
(2)連接OD;
∵AD=BD,OB=OC,
∴OD是△BCA的中位線(xiàn),
∴OD∥AC.
∵DE⊥AC,
∴DF⊥OD.
∵OD為半徑,
∴DF是⊙O的切線(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將整式-[a-(b+c)]去括號(hào)得 ( )
A. -a+b+c B. -a+b-c C. -a-b+c D. -a-b-c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若△ABC與△DEF關(guān)于點(diǎn)O成中心對(duì)稱(chēng),且A、B、C的對(duì)稱(chēng)點(diǎn)分別為D、E、F,若AB=5,AC=3,則EF的范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)數(shù)的相反數(shù)是最大的負(fù)整數(shù),則這個(gè)是( )
A. 1B. -1C. 0D. 0或-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年第一季度,我市在改善環(huán)境綠化方面投入資金達(dá)到4080000元,4080000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列是平方差公式應(yīng)用的是( 。
A. (x+y)(﹣x﹣y) B. (2a﹣b)(2a+b) C. (﹣m+2n)(m﹣2n) D. (4x+3y)(4y﹣3x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出的算式中,你認(rèn)為可以幫助探究有理數(shù)加法法則的算式組合是________
①3+(﹣2);②4+3;③(﹣3)+(﹣2);④3+13;⑤3+0;⑥6+(﹣3);⑦4+(﹣5);⑧5+(﹣5).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com