【題目】如圖,在菱形ABCD,AB=6,DAB=60°,AE分別交BC、BD于點(diǎn)E、F,CE=2,連接CF.以下結(jié)論:①∠BAF=BCF; ②點(diǎn)EAB的距離是2; SCDF:SBEF=9:4; tanDCF=3/7. 其中正確的有()

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

【答案】B

【解析】試題分析:∵四邊形ABCD是菱形,

BABC,∠ABD=∠CBD,

在△ABF和△CBF中,

,

∴△ABF≌△CBF,

∴∠BAF=∠BCF,①正確;

EGABAB的延長(zhǎng)線于G,

ADBC,∠DAB=60°,

∴∠EBG=60°,

EBBCCE=4,

EGEB×sin∠EGB=4×,②正確;

AB=6,CE=2,

∴SBEF=2SCEF,

∵AD∥BC,

,

∴SCFDSCFB

∴SCDF:SBEF=9:4,③正確;

FHCDH,

DHDF=2,FH,

∴tan∠DCF,④錯(cuò)誤,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l1y=kx+b與直線l2y=bx+k在同一坐標(biāo)系中的大致位置是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且∠AOB=40°,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),當(dāng)△PMN周長(zhǎng)取最小值時(shí),則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)為(m0),點(diǎn)B的坐標(biāo)為(m﹣20),在x軸上方取點(diǎn)C,使CBx軸,且CB=2AO,點(diǎn)C,C′關(guān)于直線x=m對(duì)稱,BC′交直線x=m于點(diǎn)E,若△BOE的面積為4,則點(diǎn)E的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx3的圖象在第一象限內(nèi)相交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為4

1)求點(diǎn)A的坐標(biāo)及一次函數(shù)的解析式;

2)若直線x=2與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)BC,求線段BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,PBC邊上一動(dòng)點(diǎn)(不與B、C兩點(diǎn)重合),將△ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上取一點(diǎn)M,使得將△CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PECD于點(diǎn)N,連接AM、AN.

(1)若PBC的中點(diǎn),則sinCPM=________;

(2)求證:∠PAN的度數(shù)不變;

(3)當(dāng)PBC邊上運(yùn)動(dòng)時(shí),△ADM的面積是否存在最小值,若存在,請(qǐng)求出PB的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P與點(diǎn) Q 都在y軸上,且關(guān)于x軸對(duì)稱.

(1)請(qǐng)畫出ABP 關(guān)于x軸的對(duì)稱圖形 (其中點(diǎn) A 的對(duì)稱點(diǎn)用 表示,點(diǎn) 的對(duì)稱點(diǎn)用 表示);

(2)點(diǎn)P ,Q 同時(shí)都從y軸上的位置出發(fā),分別沿l1,l2方向,以相同的速度向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中是否在某個(gè)位置使得 成立?若存在,請(qǐng)你在圖中畫出此時(shí) PQ 的位置(用線段 表示),若不存在,請(qǐng)你說(shuō)明理由(注:畫圖時(shí),先用鉛筆畫好,再用鋼筆描黑).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1.直線AD∥EF,點(diǎn)BC分別在EFAD上,∠A=∠ABCBD平分∠CBF

1)求證:AB⊥BD;

2)如圖2BG⊥AD于點(diǎn)G,求證:∠ACB=2∠ABG;

3)在(2)的條件下,如圖3,CH平分∠ACBBG于點(diǎn)H,設(shè)∠ABG=α,請(qǐng)直接寫出∠BHC的度數(shù).(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,ACBD是對(duì)角線。將DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到DGHHGAB于點(diǎn)E,連接DEAC于點(diǎn)F,連接FG。則下列結(jié)論:①四邊形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正確的結(jié)論是( )

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

同步練習(xí)冊(cè)答案