分析 (1)根據(jù)三角形內(nèi)角和定理,求得∠ACB的度數(shù),再根據(jù)CD是∠ACB的角平分線,CE是AB邊上的高,求得∠ACD與∠ACE的度數(shù),最后根據(jù)∠DCE=∠ACE-∠ACD進行計算即可;
(2)根據(jù)三角形內(nèi)角和定理,求得∠ACB的度數(shù),再根據(jù)CD是∠ACB的角平分線,CE是AB邊上的高,求得∠ACD與∠ACE的度數(shù),最后根據(jù)∠DCE=∠ACE-∠ACD進行計算即可.
解答 解:(1)∵△ABC中,∠A=40°,∠B=60°,
∴∠ACB=80°,
又∵CD是∠ACB的角平分線,CE是AB邊上的高,
∴∠ACD=$\frac{1}{2}$∠ACB=40°,∠ACE=90°-∠A=50°,
∴∠DCE=∠ACE-∠ACD=50°-40°=10°;
(2))∵△ABC中,∠A=m,∠B=n,
∴∠ACB=180°-m-n,
又∵CD是∠ACB的角平分線,CE是AB邊上的高,
∴∠ACD=$\frac{1}{2}$∠ACB=$\frac{1}{2}$(180°-m-n),∠ACE=90°-∠A=90°-m,
∴∠DCE=∠ACE-∠ACD=(90°-m)-$\frac{1}{2}$(180°-m-n)=$\frac{n-m}{2}$.
故答案為:$\frac{n-m}{2}$.
點評 本題主要考查了三角形的內(nèi)角和定理以及三角形的高線和角平分線的概念,解題時注意:根據(jù)∠DCE=∠ACE-∠ACD這一關(guān)系式進行計算是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3a<3b | B. | $-\frac{1}{3}$a>-$\frac{1}{3}$b | C. | a-3<b-3 | D. | a+1<b-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com