【題目】如圖,是的直徑,為上一點(diǎn),是半徑上一動(dòng)點(diǎn)(不與,重合),過(guò)點(diǎn)作射線,分別交弦,于,兩點(diǎn),過(guò)點(diǎn)的切線交射線于點(diǎn).
(1)求證:.
(2)當(dāng)是的中點(diǎn)時(shí),
①若,試證明四邊形為菱形;
②若,且,求的長(zhǎng)度.
【答案】(1)見(jiàn)解析;(2)①見(jiàn)解析;②9
【解析】
(1)連接OC,根據(jù)切線的性質(zhì)得出OC⊥CF以及∠OBC=∠OCB得∠FCD=∠FDC,可證得結(jié)論;
(2)①如圖2,連接OC,OE,BE,CE,可證△BOE,△OCE均為等邊三角形,可得OB=BE=CE=OC,可得結(jié)論;
②設(shè)AC=3k,BC=4k(k>0),由勾股定理可求k=6,可得AC=18,BC=24,由面積法可求PE,由勾股定理可求OP的長(zhǎng).
(1)連接OC,
∵CF是⊙O的切線,
∴OC⊥CF,
∴∠OCF=90°,則∠OCB+∠DCF=90°,
∵OC=OB,
∴∠OCB=∠OBC,
∵PD⊥AB,
∴∠BPD=90°,則∠OBC+∠BDP=90°,
∴∠BDP=∠DCF,
∵∠BDP=∠CDF,
∴∠DCF=∠CDF,
∴FC=FD;
(2)①如圖2,連接OC、OE、BE、CE,
∵AB是直徑,
∴∠ACB=90°,
∵∠BAC=60°,
∴∠BOC=120°,
∵點(diǎn)E是的中點(diǎn),
∴∠BOE=∠COE=60°,
∵OB=OE=OC,
∴△BOE,△OCE均為等邊三角形,
∴OB=BE=CE=OC,
∴四邊形BOCE是菱形;
②∵,
∴設(shè)AC=3k,BC=4k(k>0),
由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,
解得k=6,
∴AC=18,BC=24,
∵點(diǎn)E是的中點(diǎn),
∴OE⊥BC,BH=CH=12,
∴S△OBE=OE×BH=OB×PE,即15×12=15PE,
解得:PE=12,
由勾股定理得OP=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知A、B、C是⊙O上的三點(diǎn),AB=AC,∠BAC=120°.
(1)求證:⊙O的半徑R=AB;
(2)如圖2,若點(diǎn)D是∠BAC所對(duì)弧上的一動(dòng)點(diǎn),連接DA,DB,DC.
①探究DA,DB,DC三者之間的數(shù)量關(guān)系,并說(shuō)明理由;
②若AB=3,點(diǎn)C'與C關(guān)于AD對(duì)稱(chēng),連接C'D,點(diǎn)E是C'D的中點(diǎn),當(dāng)點(diǎn)D從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),求點(diǎn)E的運(yùn)動(dòng)路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小文設(shè)計(jì)的“過(guò)圓外一點(diǎn)作圓的切線”的作圖過(guò)程.已知:和圓外一點(diǎn).求作:過(guò)點(diǎn)的的切線.作法:①連接;②以為直徑作,交于點(diǎn),;③作直線,;所以直線,為的切線.
根據(jù)小文設(shè)計(jì)的作圖過(guò)程,完成下面的證明.
證明:連接,.
∵為的直徑,
∴=∠________=________
(________)(填推理的依據(jù)).
∴,________.
∵,為
∴直線,為的切線(________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,以AB為直徑的半圓O交AC于點(diǎn)D,點(diǎn)E是上不與點(diǎn)B,D重合的任意一點(diǎn),連接AE交BD于點(diǎn)F,連接BE并延長(zhǎng)交AC于點(diǎn)G.
(1)求證:;
(2)填空:
①若,且點(diǎn)E是的中點(diǎn),則DF的長(zhǎng)為 ;
②取的中點(diǎn)H,當(dāng)的度數(shù)為 時(shí),四邊形OBEH為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠B=30°,△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0<α<120°)得到,與BC,AC分別交于點(diǎn)D,E.設(shè),的面積為,則與的函數(shù)圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,動(dòng)點(diǎn)從點(diǎn)出發(fā),在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒,連接.若以為直徑的與的邊相切,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)在平面直角坐標(biāo)系中,按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,2),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,1),第4次接著運(yùn)動(dòng)到點(diǎn)(4,0),……,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第27次運(yùn)動(dòng)后,動(dòng)點(diǎn)的坐標(biāo)是( )
A.(26,0)B.(26,1)C.(27,1)D.(27,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,六邊形中,,,.
(1)找出這個(gè)六邊形中所有相等的內(nèi)角_______.證明其中的一個(gè)結(jié)論.
(2)如果,證明對(duì)角線,互相平分;
(3)如圖,如果,,,,,對(duì)角線平分對(duì)角線,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)對(duì)該校學(xué)生進(jìn)行了“你喜歡的運(yùn)動(dòng)項(xiàng)目”的情況問(wèn)卷調(diào)查,在全部調(diào)查問(wèn)卷中,隨機(jī)抽取了部分學(xué)生的調(diào)查問(wèn)卷進(jìn)行了分析整理,得到了如下的樣本統(tǒng)計(jì)圖表和扇形統(tǒng)計(jì)圖:
(1)求m,n的值;
(2)該校學(xué)生總數(shù)為500人,學(xué)校決定按比例在B,C,D類(lèi)學(xué)生中抽取學(xué)生進(jìn)行課余訓(xùn)練,其比例為B類(lèi)20%,C,D類(lèi)各取60%,請(qǐng)你估計(jì)該校參加課余訓(xùn)練的學(xué)生數(shù);
(3)隨機(jī)抽取的部分學(xué)生的調(diào)查問(wèn)卷中,若C類(lèi)運(yùn)動(dòng)項(xiàng)目的4位學(xué)生中有3位男生,1位女生,請(qǐng)用列舉法求出在C類(lèi)中隨機(jī)抽出2位學(xué)生進(jìn)行專(zhuān)家培訓(xùn),其中有1位女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com