【題目】如圖,在中,,以AB為直徑的半圓OAC于點(diǎn)D,點(diǎn)E上不與點(diǎn)B,D重合的任意一點(diǎn),連接AEBD于點(diǎn)F,連接BE并延長交AC于點(diǎn)G

1)求證:

2)填空:

,且點(diǎn)E的中點(diǎn),則DF的長為   ;

的中點(diǎn)H,當(dāng)的度數(shù)為   時(shí),四邊形OBEH為菱形.

【答案】1)見解析(2)①②30°

【解析】

1)利用直徑所對的圓周角是直角,可得,再應(yīng)用同角的余角相等可得,易得得證;

2)作,應(yīng)用等弧所對的圓周角相等得,再應(yīng)用角平分線性質(zhì)可得結(jié)論;由菱形的性質(zhì)可得,結(jié)合三角函數(shù)特殊值可得

解:(1)證明:如圖1,,

AB的直徑,

,

;

2)①如圖2,過FH,點(diǎn)E的中點(diǎn),

,

,

,即

,

,即,

故答案為

②連接OE,EH點(diǎn)H的中點(diǎn),

,

四邊形OBEH為菱形,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視熱播節(jié)目朗讀者激發(fā)了學(xué)生的閱讀興趣.某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從文史類、社科類、小說類、生活類中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了   名學(xué)生;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)圖2小說類所在扇形的圓心角為   度;

(4)若該校共有學(xué)生2500人,估計(jì)該校喜歡社科類書籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果

下面有三個(gè)推斷:

①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄正面向上的次數(shù)是47,所以正面向上的概率是0.47;

②隨著試驗(yàn)次數(shù)的增加,正面向上的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)正面向上的概率是0.5;

③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),正面向上的頻率一定是0.45

其中合理的是(  )

A.B.C.①②D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過直線外一點(diǎn)且與這條直線相切的圓稱為這個(gè)點(diǎn)和這條直線的點(diǎn)線圓.特別地,半徑最小的點(diǎn)線圓稱為這個(gè)點(diǎn)和這條直線的最小點(diǎn)線圓.

在平面直角坐標(biāo)系中,點(diǎn)

1)已知點(diǎn),,分別以,為圓心,1為半徑作,,以為圓心,2為半徑作,其中是點(diǎn)軸的點(diǎn)線圓的是________;

2)記點(diǎn)軸的點(diǎn)線圓為,如果與直線沒有公共點(diǎn),求的半徑的取值范圍;

3)直接寫岀點(diǎn)和直線的最小點(diǎn)線圓的圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)Py軸的正半軸上,⊙Px軸于B、C兩點(diǎn),交y軸于點(diǎn)A,以AC為直角邊作等腰RtACD,連接BD分別交y軸和ACE、F兩點(diǎn),連接AB

1)求證:ABAD;

2)若BF4,DF6,求線段CD的長;

3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時(shí),的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O的直徑CD4,ABO的弦,ABCD,垂足為M,且AB2,則∠ACD等于( 。

A.30°B.60°C.30°或60°D.45°或60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點(diǎn),是半徑上一動(dòng)點(diǎn)(不與,重合),過點(diǎn)作射線,分別交弦,,兩點(diǎn),過點(diǎn)的切線交射線于點(diǎn)

1)求證:

2)當(dāng)的中點(diǎn)時(shí),

①若,試證明四邊形為菱形;

②若,且,求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).

小菲根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小菲的探究過程,請補(bǔ)充完整:

1)函數(shù)的自變量的取值范圍是___________________

2)下表是的幾組對應(yīng)值.

1

2

3

2

表中的值為____________________________

3)如下圖,在平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組對應(yīng)值所對應(yīng)的點(diǎn),并畫出該函數(shù)的圖象;

4)根據(jù)畫出的函數(shù)圖象,寫出:

時(shí),對應(yīng)的函數(shù)值約為__________________(結(jié)果保留一位小數(shù));

該函數(shù)的一條性質(zhì):________________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2010河南20題)為鼓勵(lì)學(xué)生參與體育鍛煉,學(xué)校計(jì)劃拿出不超過1600元的資金再購買一批籃球和排球.已知籃球和排球的單價(jià)比為,單價(jià)和為80元.

1)籃球和排球的單價(jià)分別是多少元?

2)若要求購買的籃球和排球的總數(shù)量是36個(gè),且購買的籃球的數(shù)量多于25個(gè),有哪幾種購買方案?

查看答案和解析>>

同步練習(xí)冊答案