【題目】下面是小文設(shè)計的過圓外一點作圓的切線的作圖過程.已知:和圓外一點.求作:過點的切線.作法:連接;為直徑作,交于點,作直線,;所以直線的切線.

根據(jù)小文設(shè)計的作圖過程,完成下面的證明.

證明:連接

的直徑,

=∠________=________

________)(填推理的依據(jù)).

________

,的半徑,

直線,的切線(________)(填推理的依據(jù)).

【答案】見解析

【解析】

根據(jù)“直徑所對圓周角是直角”可得,根據(jù)“經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線”即可得證.

證明:連接

的直徑,

.(直徑所對的圓周角是直角).

,的半徑,

直線,的切線.(經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對垃圾進行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護環(huán)境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區(qū)內(nèi)的AB,C,D四個小區(qū)進行檢查,并且每個小區(qū)不重復(fù)檢查.

1)甲組抽到A小區(qū)的概率是多少;

2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+bx、y軸的正半軸交于點A,B,與雙曲線y=﹣交于點C(點C在第二象限內(nèi)),點D,過點CCEx軸于點E,記四邊形OBCE的面積為S1,OBD的面積為S2,若,則b的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結(jié)果

下面有三個推斷:

①當(dāng)拋擲次數(shù)是100時,計算機記錄正面向上的次數(shù)是47,所以正面向上的概率是0.47;

②隨著試驗次數(shù)的增加,正面向上的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計正面向上的概率是0.5;

③若再次用計算機模擬此實驗,則當(dāng)拋擲次數(shù)為150時,正面向上的頻率一定是0.45

其中合理的是(  )

A.B.C.①②D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】C為線段上一點,以為斜邊作等腰,連接,在外側(cè),以為斜邊作等腰,連接

1)如圖1,當(dāng)時:

①求證:;

②判斷線段的數(shù)量關(guān)系,并證明;

2)如圖2,當(dāng)時,的數(shù)量關(guān)系是否保持不變?

對于以上問題,小牧同學(xué)通過觀察、實驗,形成了解決該問題的幾種思路:

想法1:嘗試將點D為旋轉(zhuǎn)中心,過點D作線段垂線,交延長線于點G,連接;通過證明解決以上問題;

想法2:嘗試將點D為旋轉(zhuǎn)中心,過點D作線段垂線,垂足為點G,連接.通過證明解決以上問題;

想法3:嘗試?yán)盟狞c共圓,過點D垂線段,連接,通過證明D、F、B、E四點共圓,利用圓的相關(guān)知識解決以上問題.

請你參考上面的想法,證明(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過直線外一點且與這條直線相切的圓稱為這個點和這條直線的點線圓.特別地,半徑最小的點線圓稱為這個點和這條直線的最小點線圓.

在平面直角坐標(biāo)系中,點

1)已知點,,,分別以,為圓心,1為半徑作,,以為圓心,2為半徑作,其中是點軸的點線圓的是________

2)記點軸的點線圓為,如果與直線沒有公共點,求的半徑的取值范圍;

3)直接寫岀點和直線的最小點線圓的圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點Py軸的正半軸上,⊙Px軸于B、C兩點,交y軸于點A,以AC為直角邊作等腰RtACD,連接BD分別交y軸和ACEF兩點,連接AB

1)求證:ABAD;

2)若BF4DF6,求線段CD的長;

3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時,的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點,是半徑上一動點(不與,重合),過點作射線,分別交弦,,兩點,過點的切線交射線于點

1)求證:

2)當(dāng)的中點時,

①若,試證明四邊形為菱形;

②若,且,求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)yax24ax+a+1a0

1)若二次函數(shù)的圖象與x軸有交點,求a的取值范圍;

2)若Pm,n)和Q5b)是拋物線上兩點,且nb,求實數(shù)m的取值范圍;

3)當(dāng)m≤x≤m+2時,求y的最小值(用含a、m的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案