【題目】如圖,在ABCD中,點E,F(xiàn)在對角線AC上,且AE=CF.求證:
(1)DE=BF;
(2)四邊形DEBF是平行四邊形.
【答案】詳見解析.
【解析】
試題分析:(1)根據(jù)全等三角形的判定方法,判斷出△ADE≌△CBF,即可推得DE=BF.(2)首先判斷出DE∥BF;然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形,推得四邊形DEBF是平行四邊形即可.
試題解析:(1)∵四邊形ABCD是平行四邊形,
∴AD∥CB,AD=CB,
∴∠DAE=∠BCF,
在△ADE和△CBF中,
∴△ADE≌△CBF,
∴DE=BF.
(2)由(1),可得∴△ADE≌△CBF,
∴∠ADE=∠CBF,
∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,
∴∠DEF=∠BFE,
∴DE∥BF,
又∵DE=BF,
∴四邊形DEBF是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△AB C沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=98°,則∠C的度數(shù)為( )
A. 40° B. 41° C. 42° D. 43°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副三角板如圖1擺放,∠C=∠DFE=90,∠B=30,∠E=45,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當點D落在射線FB上時停止旋轉(zhuǎn)).
(1)當∠AFD=_ __時,DF∥AC;當∠AFD=__ _時,DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,P是CD邊上一點,且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)[x]表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),則[]+[]+[]+…+[]=( 。
A. 132 B. 146 C. 161 D. 666
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com