【題目】如圖,在矩形中,是上的一點,連接,將△進行翻折,恰好使點落在的中點處,在上取一點,以點為圓心,的長為半徑作半圓與相切于點;若,則圖中陰影部分的面積為 ____ .
【答案】.
【解析】
連接OG,證明△DOG∽△DFC,得出,設OG=OF=r,進而求出圓的半徑,再證明△OFQ為等邊三角形,則可由扇形的面積公式和三角形的面積公式求出答案.
解:連接OG,過O點作OH⊥BC于H點,設圓O與BC交于Q點,如下圖所示:
設圓的半徑為r,
∵CD是圓的切線,
∴OG⊥CD,
∴△DOG∽△DFC,
∴,由翻折前后對應的線段相等可得DF=DA=4,
∵F是BC的中點,∴CF=BF=2,代入數(shù)據(jù):
∴,
∴,
∴,
∴,
∴∠ODG=30°,∴∠DFC=60°,
且OF=OQ,∴△OFQ是等邊三角形,
∴∠DOQ=180°-60°=120°,
同理△OGQ也為等邊三角形,
∴OH=,且S扇形OGQ=S扇形OQF
∴
.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角尺按圖1擺放,等腰直角三角尺的直角邊DF恰好垂直平分AB,與AC相交于點G,.
(1)求GC的長;
(2)如圖2,將△DEF繞點D順時針旋轉,使直角邊DF經過點C,另一直角邊DE與AC相交于點H,分別過H、C作AB的垂線,垂足分別為M、N,通過觀察,猜想MD與ND的數(shù)量關系,并驗證你的猜想.
(3)在(2)的條件下,將△DEF沿DB方向平移得到△D′E′F′,當D′E′恰好經過(1)中的點G時,請直接寫出DD′的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,點為邊上的一點(與、不重合)四邊形關于直線的對稱圖形為四邊形,延長交與點,記四邊形的面積為.
(1)若,求的值;
(2)設,求關于的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,把與軸交點相同的二次函數(shù)圖像稱為“共根拋物線”.如圖,拋物線的頂點為,交軸于點、(點在點左側),交軸于點.拋物線與是“共根拋物線”,其頂點為.
(1)若拋物線經過點,求對應的函數(shù)表達式;
(2)當的值最大時,求點的坐標;
(3)設點是拋物線上的一個動點,且位于其對稱軸的右側.若與相似,求其“共根拋物線”的頂點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了打好疫情期間的復工復產攻堅戰(zhàn),某公司決定為員工采購一批口罩和消毒液,經了解,購買4包口罩和3瓶消毒液共需要185元,購買8包口罩和5瓶消毒液共需要335元,
(1)一包口罩和一瓶消毒液各需要多少元?
(2)實際購買時發(fā)現(xiàn)廠家有兩種優(yōu)惠方案:方案一:購買口罩不超過20包時,每包都按九折優(yōu)惠,超過20包時,超過部分每包按七折優(yōu)惠;方案二:口罩和消毒液都按原價的八折優(yōu)惠,公司購買包口罩,10瓶消毒液.
①求兩種方案下所需的費用(單位:元)與(單位:包)的函數(shù)關系式;
②若該公司決定購買包口罩和10瓶消毒液,請你幫助該公司決定選擇哪種方案更合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙是△的外接圓,為直徑,點是⊙外一點,且,連接交于點,延長交⊙于點.
⑴.證明:=;
⑵.若,證明:是⊙的切線;
⑶.在⑵的條件下,連接交⊙于點,連接;若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=5,BC=8,cosB=,點E是BC邊上的動點,以C為圓心,CE長為半徑作圓C,交AC于F,連接AE,EF.
(1)求AC的長;
(2)當AE與圓C相切時,求弦EF的長;
(3)圓C與線段AD沒有公共點時,確定半徑CE的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小張去文具店購買作業(yè)本,作業(yè)本有大、小兩種規(guī)格,大本作業(yè)本的單價比小本作業(yè)本貴0.3元,已知用8元購買大本作業(yè)本的數(shù)量與用5元購買小本作業(yè)本的數(shù)量相同.
(1)求大本作業(yè)本與小本作業(yè)本每本各多少元?
(2)因作業(yè)需要,小張要再購買一些作業(yè)本,購買小本作業(yè)本的數(shù)量是大本作業(yè)本數(shù)量的2倍,總費用不超過15元.則大本作業(yè)本最多能購買多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在初中階段的函數(shù)學習中,我們經歷了列表、描點、連線畫函數(shù)圖象,并結合圖象研究函數(shù)性質的過程.以下是我們研究函數(shù)性質及其應用的部分過程,請按要求完成下列各小題.
(1)請把下表補充完整,并在圖中補全該函數(shù)圖象;
… | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … | |
… | -3 | 0 | 3 | … |
(2)根據(jù)函數(shù)圖象,判斷下列關于該函數(shù)性質的說法是否正確,正確的在相應的括號內打“√”,錯誤的在相應的括號內打“×”;
①該函數(shù)圖象是軸對稱圖形,它的對稱軸為y軸;( )
②該函數(shù)在自變量的取值范圍內,有最大值和最小值,當時,函數(shù)取得最大值3;當時,函數(shù)取得最小值-3;( )
③當或時,y隨x的增大而減小;當時,y隨x的增大而增大;( )
(3)已知函數(shù)的圖象如圖所示,結合你所畫的函數(shù)圖象,直接寫出不等式的解集(保留1位小數(shù),誤差不超過0.2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com