【題目】為了打好疫情期間的復(fù)工復(fù)產(chǎn)攻堅(jiān)戰(zhàn),某公司決定為員工采購一批口罩和消毒液,經(jīng)了解,購買4包口罩和3瓶消毒液共需要185元,購買8包口罩和5瓶消毒液共需要335元,

1)一包口罩和一瓶消毒液各需要多少元?

2)實(shí)際購買時(shí)發(fā)現(xiàn)廠家有兩種優(yōu)惠方案:方案一:購買口罩不超過20包時(shí),每包都按九折優(yōu)惠,超過20包時(shí),超過部分每包按七折優(yōu)惠;方案二:口罩和消毒液都按原價(jià)的八折優(yōu)惠,公司購買包口罩,10瓶消毒液.

①求兩種方案下所需的費(fèi)用(單位:元)與(單位:包)的函數(shù)關(guān)系式;

②若該公司決定購買包口罩和10瓶消毒液,請(qǐng)你幫助該公司決定選擇哪種方案更合算.

【答案】1)一包口罩20元,一瓶消毒液35元;(2)①方案一:當(dāng)時(shí),;當(dāng)時(shí),;方案二:;②當(dāng)時(shí),選擇方案二;當(dāng)時(shí),選擇方案一、二;當(dāng)時(shí),選擇方案一.

【解析】

1)設(shè)一包口罩a元,一瓶消毒液b元,根據(jù)題意列出式子求解即可;

2)①根據(jù)題意分當(dāng)時(shí)和當(dāng)時(shí)兩種情況計(jì)算即可;

②將兩種方案比較得不等式,求解即可.

1)設(shè)一包口罩a元,一瓶消毒液b元,

解得,

答:一包口罩20元,一瓶消毒液35元;

2)①方案一:當(dāng)時(shí),,

當(dāng)時(shí);

方案二:;

,

,

當(dāng)時(shí),解得

當(dāng)時(shí),解得

當(dāng)時(shí),解得

∴當(dāng)時(shí),選擇方案二;

當(dāng)時(shí),選擇方案一、二;

當(dāng)時(shí),選擇方案一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:如圖,都是等腰直角三角形,且點(diǎn)邊上,的中點(diǎn)均為,連接,,,顯然,點(diǎn),在同一條直線上,可以證明,所以

解決問題:

1 將圖中的繞點(diǎn)旋轉(zhuǎn)到圖的位置, 猜想此時(shí)線段的數(shù)量關(guān)系,并證明你的結(jié)論.

2 如圖,若都是等邊三角形,,的中點(diǎn)均為,上述中結(jié)論仍然成立嗎?如果成立,請(qǐng)說明理由;如果不成立,請(qǐng)求出之間的數(shù)量關(guān)系.

3 如圖, 都是等腰三角形,,的中點(diǎn)均為,且頂角,之間的數(shù)量關(guān)系如何(用含的式子表示出來)?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖像過點(diǎn),且與軸交于點(diǎn),點(diǎn)在該拋物線的對(duì)稱軸上,若是以為直角邊的直角三角形,則點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在世界環(huán)境日(65日),學(xué)校組織了保護(hù)環(huán)境知識(shí)測(cè)試,現(xiàn)從中隨機(jī)抽取部分學(xué)生的成績作為樣本,按“優(yōu)秀”“良好”“合格”“不合格”四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制了如下尚不完整的統(tǒng)計(jì)圖表.

測(cè)試成績統(tǒng)計(jì)表

等級(jí)

頻數(shù)(人數(shù))

頻率

優(yōu)秀

30

良好

0.45

合格

24

0.20

不合格

12

0.10

合計(jì)

1

根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問題:

1)表中________________,________

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校有2400名學(xué)生參加了本次測(cè)試,估計(jì)測(cè)試成績等級(jí)在良好以上(包括良好)的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,矩形ABCD的邊BC軸上,頂點(diǎn),連接AC按照下列方法作圖:(1)以點(diǎn)C為圓心,適當(dāng)?shù)拈L度為半徑畫弧分別交CA,CD于點(diǎn)E,F;(2)分別以點(diǎn)E,F為圓心,大于的長為半徑畫弧交于點(diǎn)G;(3)作射線CGADH,則點(diǎn)H的橫坐標(biāo)為(

A.6B.4C.3D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,上的一點(diǎn),連接,進(jìn)行翻折,恰好使點(diǎn)落在的中點(diǎn)處,在上取一點(diǎn),以點(diǎn)為圓心,的長為半徑作半圓與相切于點(diǎn);,則圖中陰影部分的面積為 ____


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)α度到△A1B1C1的位置,ABA1C1相交于點(diǎn)D,ACA1C1、BC1分別交于點(diǎn)E. F.

(1)求證:△BCF≌△BA1D.

(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象交軸于兩點(diǎn),交軸于點(diǎn).動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿方向運(yùn)動(dòng),過點(diǎn)軸交直線于點(diǎn),交拋物線于點(diǎn),連接.設(shè)運(yùn)動(dòng)的時(shí)間為.

(1)求二次函數(shù)的表達(dá)式:

(2)連接,當(dāng)時(shí),求的面積:

(3)在直線上存在一點(diǎn),當(dāng)是以為直角的等腰直角三角形時(shí),求此時(shí)點(diǎn)的坐標(biāo);

(4)當(dāng)時(shí),在直線上存在一點(diǎn),使得,求點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在距某居民樓AB樓底B點(diǎn)左側(cè)水平距離60mC點(diǎn)處有一個(gè)山坡,山坡CD的坡度(或坡比),山坡坡底C點(diǎn)到坡頂D點(diǎn)的距離,在坡頂D點(diǎn)處測(cè)得居民樓樓頂A點(diǎn)的仰角為28°,居民樓AB與山坡CD的剖面在同一平面內(nèi),則居民樓AB的高度約為(

(參考數(shù)據(jù):,

A.76.9mB.82.1mC.94.8mD.112.6m

查看答案和解析>>

同步練習(xí)冊(cè)答案