【題目】隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來(lái)越高,某公司根據(jù)市場(chǎng)需求代理A,B兩種型號(hào)的凈水器,其中A型凈水器每臺(tái)的利潤(rùn)為400元,B型凈水器每臺(tái)的利潤(rùn)為500元.該公司計(jì)劃再一次性購(gòu)進(jìn)兩種型號(hào)的凈水器共100臺(tái),其中B型凈水器的進(jìn)貨量不超過(guò)A型凈水器的2倍,設(shè)購(gòu)進(jìn)A型凈水器x臺(tái),這100臺(tái)凈水器的銷售總利潤(rùn)為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該公司購(gòu)進(jìn)A型、B型凈水器各多少臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是多少?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型凈水器出廠價(jià)下調(diào)a(0<a<150)元,且限定公司最多購(gòu)進(jìn)A型凈水器60臺(tái),若公司保持同種凈水器的售價(jià)不變,請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)凈水器銷售總利潤(rùn)最大的進(jìn)貨方案.
【答案】(1)y=﹣100x+50000;(2)該公司購(gòu)進(jìn)A型凈水器34臺(tái)、B型凈水器66臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是46600元;(3)①當(dāng)0<a<100時(shí),公司購(gòu)進(jìn)34臺(tái)A型凈水器和66臺(tái)B型凈水器的銷售利潤(rùn)最大;②a=100時(shí),公司購(gòu)進(jìn)A型凈水器數(shù)量滿足≤x≤60的整數(shù)時(shí),均獲得最大利潤(rùn);③當(dāng)100<a<150時(shí),公司購(gòu)進(jìn)60臺(tái)A型凈水器和40臺(tái)B型凈水器的銷售利潤(rùn)最大.
【解析】
(1)根據(jù)“總利潤(rùn)=A型凈水器每臺(tái)利潤(rùn)×A型凈水器數(shù)量+B型凈水器每臺(tái)利潤(rùn)×B型凈水器數(shù)量”可得函數(shù)解析式;
(2)根據(jù)“B型凈水器的進(jìn)貨量不超過(guò)A型凈水器的2倍且凈水器量為整數(shù)”求得x的范圍,再結(jié)合(1)所求函數(shù)解析式及一次函數(shù)的性質(zhì)求解;
(3)根據(jù)a的取值范圍以及一次函數(shù)的性質(zhì),利用分類討論的方法分別進(jìn)行求解即可.
(1)根據(jù)題意,y=400x+500(100﹣x)=﹣100x+50000;
(2)∵100﹣x≤2x,
∴x≥.
∵y=﹣100x+50000中k=﹣100<0,
∴y隨x的增大而減。
∵x為正數(shù),
∴x=34時(shí),y取得最大值,最大值為46600,
答:該公司購(gòu)進(jìn)A型凈水器34臺(tái)、B型凈水器66臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是46600元;
(3)據(jù)題意得:y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,
,
①當(dāng)0<a<100時(shí),y隨x的增大而減小,
∴當(dāng)x=34時(shí),y取最大值,
即公司購(gòu)進(jìn)34臺(tái)A型凈水器和66臺(tái)B型凈水器的銷售利潤(rùn)最大.
②a=100時(shí),a﹣100=0,y=50000,
即公司購(gòu)進(jìn)A型凈水器數(shù)量滿足≤x≤60的整數(shù)時(shí),均獲得最大利潤(rùn);
③當(dāng)100<a<150時(shí),a﹣100>0,y隨x的增大而增大,
∴當(dāng)x=60時(shí),y取得最大值.
即公司購(gòu)進(jìn)60臺(tái)A型凈水器和40臺(tái)B型凈水器的銷售利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店第一次用1600元購(gòu)進(jìn)了一批新型文具試銷,很快賣完,于是第二次又用5000元購(gòu)進(jìn)了這款文具,但第二次的進(jìn)價(jià)是第一次進(jìn)價(jià)的1.25倍,購(gòu)進(jìn)數(shù)量比第一次多300件.
(1)求該文具店第一次購(gòu)進(jìn)這款文具的進(jìn)價(jià);
(2)已知該文具店將第一次購(gòu)進(jìn)的這款文具按50%的利潤(rùn)率定價(jià)銷售完后,第二次購(gòu)進(jìn)的這款文具售價(jià)在原來(lái)售價(jià)的基礎(chǔ)上增加5a%,銷售了第二次購(gòu)進(jìn)的這款文具的12a%,剩下的這款文具9折處理,銷售一空,結(jié)果該文具店前后兩次銷售這款文具共獲利3000元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小元設(shè)計(jì)的“過(guò)圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過(guò)程.
已知:如圖,⊙O及⊙O上一點(diǎn)P.
求作:過(guò)點(diǎn)P的⊙O的切線.
作法:如圖,作射線OP;
① 在直線OP外任取一點(diǎn)A,以A為圓心,AP為半徑作⊙A,與射線OP交于另一點(diǎn)B;
②連接并延長(zhǎng)BA與⊙A交于點(diǎn)C;
③作直線PC;
則直線PC即為所求.根據(jù)小元設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:∵ BC是⊙A的直徑,
∴ ∠BPC=90° (填推理依據(jù)).
∴ OP⊥PC.
又∵ OP是⊙O的半徑,
∴ PC是⊙O的切線 (填推理依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ABCD中,∠ABC=60°,AB=4,BC=m,E為BC邊上的動(dòng)點(diǎn),連結(jié)AE,作點(diǎn)B關(guān)于直線AE的對(duì)稱點(diǎn)F.
(1)若m=6,①當(dāng)點(diǎn)F恰好落在∠BCD的平分線上時(shí),求BE的長(zhǎng);
②當(dāng)E、C重合時(shí),求點(diǎn)F到直線BC的距離;
(2)當(dāng)點(diǎn)F到直線BC的距離d滿足條件:2﹣2≤d≤2+4,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在雙曲線上,垂直軸,垂足為,點(diǎn)在上,平行于軸交曲線于點(diǎn),直線與軸交于點(diǎn),已知,點(diǎn)的坐標(biāo)為.
(1)求該雙曲線的解析式;
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)活動(dòng):
問(wèn)題情境:有這樣一個(gè)問(wèn)題:探究函數(shù)的圖象與性質(zhì),小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
問(wèn)題解決:下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)的自變量的取值范圍是 ;
(2)表是與的幾組對(duì)應(yīng)值.
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | |||
… | 0 | -1 | 3 | 2 | … |
求的值;
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象.
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的性質(zhì)(兩條即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=30°,點(diǎn)O是邊AB上一點(diǎn),以點(diǎn)O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點(diǎn)D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長(zhǎng)是( 。
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,過(guò)點(diǎn)A作直線MN,且∠MAC=∠ABC.
(1)求證:MN是⊙O的切線.
(2)設(shè)D是弧AC的中點(diǎn),連結(jié)BD交AC于點(diǎn)G,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F.
①求證:FD=FG.
②若BC=3,AB=5,試求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com