【題目】如圖,已知ABCD中,∠ABC60°,AB4,BCmEBC邊上的動(dòng)點(diǎn),連結(jié)AE,作點(diǎn)B關(guān)于直線AE的對(duì)稱點(diǎn)F

1)若m6,①當(dāng)點(diǎn)F恰好落在∠BCD的平分線上時(shí),求BE的長(zhǎng);

②當(dāng)EC重合時(shí),求點(diǎn)F到直線BC的距離;

2)當(dāng)點(diǎn)F到直線BC的距離d滿足條件:22≤d≤2+4,求m的取值范圍.

【答案】1)①BE102;②;(244≤m≤8+4

【解析】

1)①過(guò)FFTBCT,延長(zhǎng)BA交∠BCD的平分線于G,連接BF,EF,AF,由平行四邊形性質(zhì)可得:△BCG,△CDH均為等邊三角形,AG=AH=2,再由BF關(guān)于直線AE對(duì)稱,可證得:△CEF∽△GFA,再結(jié)合勾股定理可求得BE的長(zhǎng);
②設(shè)BFACT,過(guò)TTRBCR,過(guò)FFHBCH,過(guò)AAGBCG,可求得BGAG、GH、AC,再由面積法可求得BT、BF,再證明△BTR∽△BFH,結(jié)合勾股定理即可求得點(diǎn)F到直線BC的距離;
2)先找出d的最大值的情形,畫出圖形,由d的最大值可求得m的最大值再根據(jù)d的最小值求得m的最小值,即可得m的范圍.

解:(1如圖1,過(guò)FFTBCT,延長(zhǎng)BABCD的平分線于G,連接BF,EF,AF

ABCD,

ABCDADBC,ABCD,ADBC

∵∠ABC60°,

∴∠BCD120°ADC60°,

CG平分BCD

∴∠BCGDCG60°

∴△BCG,CDH均為等邊三角形,

CGBCBG6,G60°,DHCD4

AGAH2,

BF關(guān)于直線AE對(duì)稱,

AFAB4EFBE,AFEABC60°

∴∠AFG+∠CFE120°,AFG+∠FAG120°,

∴∠CFEFAG,

∴△CEF∽△GFA

,即:CFEF,設(shè)BEEFx,則CFx,

∵∠CFT30°,

CTCFxFTx,

ET2+FT2EF2

,

解得:x110+ (不符合題意,舍去),x210,

BE102

如圖2,設(shè)BFACT,過(guò)TTRBCR,過(guò)FFHBCH,過(guò)AAGBCG,連接AF,FC,

∵∠AGB90°ABC60°,

∴∠BAG30°

BG AB2AG2,GCBCBG4

AC,

BF關(guān)于AC對(duì)稱,

BFACBTTF

△ABC面積公式可得BTACAGBC,

BT2×6

BT,BF,

Rt△BCT中,CT,

TRBCBTCT,即6TR,

TR,

TRBCFHBC,

TRFH,

∴△BTR∽△BFH

,

FH2TR

故點(diǎn)F到直線BC的距離為;

2)如圖3,作AGBCG,

當(dāng)點(diǎn)FA、G三點(diǎn)共線時(shí),點(diǎn)F到直線BC的距離d最大,

此時(shí)點(diǎn)E與點(diǎn)C重合,FG2 +4,

由(1)知,BG2AG2 ,

BF,

BHBF

∵∠BHCBGF90°,CBHFBG

∴△CBH∽△FBG,

,即

解得:m8+4

m的最大值為8+4

如圖4,作AGBCG,FHBCH,FRAGR,連接AF,

設(shè)BFACT,

AG2 ,BG2,CGBCBGm-2,

此時(shí)點(diǎn)E與點(diǎn)C重合,FH2

顯然,FHGR是矩形,

RGFH2 ARAGRG2,

B、F關(guān)于AC對(duì)稱,

BFACBTTF,AFAB4,

RFGH,

BHBG+GH2+

BF,

BTTFBF2,

∵△BCT∽△BFH,

,即,

解得m4 4,

m的最小值為4 4,

綜上所述,44≤m≤8+4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD與正方形CEFG,M是AF的中點(diǎn),連接DM,EM.

(1)如圖1,點(diǎn)E在CD上,點(diǎn)G在BC的延長(zhǎng)線上,請(qǐng)判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫出結(jié)論;

(2)如圖2,點(diǎn)E在DC的延長(zhǎng)線上,點(diǎn)G在BC上,(1)中結(jié)論是否仍然成立?請(qǐng)證明你的結(jié)論;

(3)將圖1中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn),使D,E,F(xiàn)三點(diǎn)在一條直線上,若AB=13,CE=5,請(qǐng)畫出圖形,并直接寫出MF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店出售某品牌的棉衣,進(jìn)價(jià)為100/件,當(dāng)售價(jià)為150/件時(shí),平均每天可賣30件;為了盡快減少庫(kù)存迎接元旦的到來(lái),商店決定降價(jià)銷售,增加利潤(rùn),經(jīng)調(diào)查每件降價(jià)5元,則每天可多賣10件,現(xiàn)要想平均每天獲利2000元,且讓顧客得到實(shí)惠,那么每件棉衣應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式;

(2)設(shè)該水果銷售店試銷草莓獲得的利潤(rùn)為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人要某風(fēng)景區(qū)游玩,每天某一時(shí)段開(kāi)往該景區(qū)有三輛汽車(票價(jià)相同),但是他們不清楚這三輛車的舒適程度,也不知道汽車開(kāi)來(lái)的順序,兩人采用了不同的乘車方案:

甲無(wú)論如何總是上開(kāi)來(lái)的第一輛車,而乙則是先觀察后上車,當(dāng)?shù)谝惠v車開(kāi)來(lái)時(shí),他不上車,而是仔細(xì)觀察車輛的舒適狀況,如果第二輛車狀況比第一輛好,他就上第二輛車,如果第二輛不比第一輛好,他就上第三輛車.這三輛車的舒適程度為上、中、下三等,請(qǐng)解決下面的問(wèn)題:

1)請(qǐng)用畫樹(shù)形圖或列表的方法分析這三輛車出現(xiàn)的先后順序,寫出所有可能的結(jié)果;(用上中下表示)

2)分析甲、乙兩人采用的方案,誰(shuí)的方案使自己坐上上等車的可能性大,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來(lái)越高,某公司根據(jù)市場(chǎng)需求代理A,B兩種型號(hào)的凈水器,其中A型凈水器每臺(tái)的利潤(rùn)為400元,B型凈水器每臺(tái)的利潤(rùn)為500元.該公司計(jì)劃再一次性購(gòu)進(jìn)兩種型號(hào)的凈水器共100臺(tái),其中B型凈水器的進(jìn)貨量不超過(guò)A型凈水器的2倍,設(shè)購(gòu)進(jìn)A型凈水器x臺(tái),這100臺(tái)凈水器的銷售總利潤(rùn)為y元.

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)該公司購(gòu)進(jìn)A型、B型凈水器各多少臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是多少?

3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型凈水器出廠價(jià)下調(diào)a0a150)元,且限定公司最多購(gòu)進(jìn)A型凈水器60臺(tái),若公司保持同種凈水器的售價(jià)不變,請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)凈水器銷售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BCAB的延長(zhǎng)線相交于點(diǎn)DE,F,且BF=BC⊙O△BEF的外接圓,∠EBF的平分線交EF于點(diǎn)G,交于點(diǎn)H,連接BD、FH

1)求證:△ABC≌△EBF

2)試判斷BD⊙O的位置關(guān)系,并說(shuō)明理由;

3)若AB=1,求HGHB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A(40),與y軸交于點(diǎn)B(0,4),在x軸上有一動(dòng)點(diǎn)D9(m,0)0m4),過(guò)點(diǎn)Dx軸的垂線交直線AB于點(diǎn)C,交拋物線于點(diǎn)E,

1)直接寫出拋物線和直線AB的函數(shù)表達(dá)式.

2)當(dāng)點(diǎn)CDE的中點(diǎn)時(shí),求出m的值,并判定四邊形ODEB的形狀(不要求證明).

3)在(2)的條件下,將線段OD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OD′,旋轉(zhuǎn)角為αa90°),連接D′A、D′B,求D′A+D′B的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在ABCEFC中,∠ABC=∠EFC90°,點(diǎn)EABC內(nèi),且∠CAE+CBE90°

1)如圖1,當(dāng)ABCEFC均為等腰直角三角形時(shí),連接BF,

①求證:CAE∽△CBF

②若BE2,AE4,求EF的長(zhǎng);

2)如圖2,當(dāng)ABCEFC均為一般直角三角形時(shí),若kBE1,AE3,CE4,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案