【題目】如圖,某船于上午11時(shí)30分在A處觀察海島B在北偏東60°,該船以10海里/小時(shí)的速度向東航行至C處,再觀察海島在北偏東30°,且船距離海島20海里.
(1)求該船到達(dá)C處的時(shí)刻.
(2)若該船從C處繼續(xù)向東航行,何時(shí)到達(dá)B島正南的D處?
【答案】解:∵∠BAC=30o,∠BCD=60o
∴∠CBA=30o
∴AC=BC=40
∴A到達(dá)C點(diǎn)所用的時(shí)間為40/10=4(小時(shí))
∴船到達(dá)C點(diǎn)的時(shí)間是15:30
(2)在直角三角形ABD中,∠A=30o,
∴∠ABD=60o,
又∵∠CBA=30o
∴∠CBD=30o
∴CD=1/2BC=20
∴C到達(dá)D點(diǎn)所用的時(shí)間為20/10=2(小時(shí))
∴船到達(dá)D點(diǎn)的時(shí)間是17:30
【解析】
(1)根據(jù)題意得:∠A=30°,∠BCD=60°,BC=40海里,根據(jù)三角形外角的性質(zhì),易證得∠ABC=∠A,根據(jù)等角對等邊,即可求得AC=BC,又由船的速度為10海里/時(shí),即可求得船到達(dá)C點(diǎn)的時(shí)間;
(2)由在Rt△BCD中,∠BCD=60°,BC=40海里,即可求得CD的長,繼而求得到達(dá)B島正南的D處的時(shí)間.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)整數(shù),將其末三位截去,這個(gè)末三位數(shù)與余下的數(shù)的7倍的差能被19整除,則這個(gè)數(shù)能被19整除,否則不能被19整除,能被19整除的我們稱之為“靈異數(shù)”.
如46379,由,能被19整除,能被19整除,是“靈異數(shù)”.
請用上述規(guī)則判斷52478和9115是否為“靈異數(shù)”;
有一個(gè)首位數(shù)字是1的五位正整數(shù),它的個(gè)位數(shù)字不為0且是千位數(shù)字的2倍,十位和百位上的數(shù)字之和為8,若這個(gè)數(shù)恰好是“靈異數(shù)”,請求出這個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,OA在x軸的負(fù)半軸上,OC在y軸的正半軸上.
Ⅰ若,.
如圖1,將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)得到矩形,當(dāng)點(diǎn)A的對應(yīng)點(diǎn)落在BC邊上時(shí),求點(diǎn)的坐標(biāo);
如圖,將矩形OABC繞點(diǎn)O順時(shí)針方向旋得到矩形,當(dāng)點(diǎn)B的對應(yīng)點(diǎn)落在軸的正半軸上時(shí),求點(diǎn)的坐標(biāo);
Ⅱ若,,如圖3,設(shè)邊與BC交于點(diǎn)E,若,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,將一個(gè)邊長為2的正方形ABCD和一個(gè)長為2,寬為1的矩形CEFD拼在一起,構(gòu)成一個(gè)大的矩形ABEF,現(xiàn)將小矩形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α.
(1)當(dāng)點(diǎn)D′恰好落在EF邊上時(shí),求旋轉(zhuǎn)角α的值;
(2)如圖2,G為BC中點(diǎn),且0°<α<90°,求證:GD′=E′D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(一1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M是拋物線對稱軸上的一個(gè)動點(diǎn),當(dāng)△ACM周長最小時(shí),求點(diǎn)M的坐標(biāo)及△ACM的最小周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種拉桿式旅行箱的示意圖如圖所示,箱體長AB=50cm,拉桿最大伸長距離BC=35cm,(點(diǎn)A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,⊙A與水平地面切于點(diǎn)D,AE∥DN,某一時(shí)刻,點(diǎn)B距離水平面38cm,點(diǎn)C距離水平面59cm.
(1)求圓形滾輪的半徑AD的長;
(2)當(dāng)人的手自然下垂拉旅行箱時(shí),人感覺較為舒服,已知某人的手自然下垂在點(diǎn)C處且拉桿達(dá)到最大延伸距離時(shí),點(diǎn)C距離水平地面73.5cm,求此時(shí)拉桿箱與水平面AE所成角∠CAE的大。ň_到1°,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于某一函數(shù)給出如下定義:若存在實(shí)數(shù)p,當(dāng)其自變量的值為p時(shí),其函數(shù)值等于p,則稱p為這個(gè)函數(shù)的不變值.在函數(shù)存在不變值時(shí),該函數(shù)的最大不變值與最小不變值之差q稱為這個(gè)函數(shù)的不變長度.特別地,當(dāng)函數(shù)只有一個(gè)不變值時(shí),其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個(gè)不變值,其不變長度q等于1.
(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;
(2)函數(shù)y=2x2-bx.
①若其不變長度為零,求b的值;
②若1≤b≤3,求其不變長度q的取值范圍;
(3) 記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個(gè)不重合的二次函數(shù)圖象關(guān)于軸對稱,則稱這兩個(gè)二次函數(shù)為“關(guān)于軸對稱的二次函數(shù)”.
(1)請寫出兩個(gè)“關(guān)于軸對稱的二次函數(shù)”;
(2)已知兩個(gè)二次函數(shù)和是“關(guān)于軸對稱的二次函數(shù)”,求函數(shù)的頂點(diǎn)坐標(biāo)(用含的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com