【題目】如圖,在中,內(nèi)兩點(diǎn),平分,若,,則____________.

【答案】12

【解析】

首先延長(zhǎng)EDBCM,延長(zhǎng)ADBCN,過(guò)點(diǎn)DDFBC,交BEF,易得:EFD∽△EBM,又由AB=AC,AD平分∠BAC,根據(jù)等腰三角形的性質(zhì),即可得ANBCBN=CN,又由∠EBC=E=60°,可得BEMEFD為等邊三角形,又由直角三角形中,30°角所對(duì)的直角邊是斜邊的一半,即可求得MNBM的值,繼而求得答案.

解:延長(zhǎng)EDBCM,延長(zhǎng)ADBCN,過(guò)點(diǎn)DDFBC,交BEF,

EFD∽△EBM,

AB=ACAD平分∠BAC,
ANBCBN=CN,
∵∠EBC=E=60°,

∴△BEM為等邊三角形,
∴△EFD為等邊三角形,
BE=9cm,DE=3cm
DM=6cm,
∵∠DNM=90°,∠DMN=60°,
∴∠NDM=30°,
NM=DM=3cm
BN=BM-MN=9-3=6cm),
BC=2BN=12cm).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明設(shè)計(jì)的在一個(gè)平行四邊形內(nèi)作菱形的尺規(guī)作圖過(guò)程.

已知:四邊形是平行四邊形.

求作:菱形(點(diǎn)上,點(diǎn)上).

作法:①以為圓心,長(zhǎng)為半徑作弧,交于點(diǎn);

②以為圓心,長(zhǎng)為半徑作弧,交于點(diǎn);

③連接.所以四邊形為所求作的菱形.

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵,

      

中,

∴四邊形為平行四邊形.

∴四邊形為菱形(   )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】嵊州市三江購(gòu)物中心為了迎接店慶,準(zhǔn)備了某種氣球,這些氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓PkPa)是氣體體積Vm3)的反比例函數(shù),其圖象如下圖所示.

1)試寫(xiě)出這個(gè)函數(shù)的表達(dá)式;

2)當(dāng)氣球的體積為2m3時(shí),氣球內(nèi)氣體的氣壓是多少?

3)當(dāng)氣球內(nèi)的氣壓大于120kPa時(shí),氣球?qū)⒈ǎ疄榱税踩鹨?jiàn),對(duì)氣球的體積有什么要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019級(jí)即將迎來(lái)中考,很多家長(zhǎng)都在為孩子準(zhǔn)備營(yíng)養(yǎng)午餐.一家快餐店看準(zhǔn)了商機(jī),在55號(hào)推出了A,BC三種營(yíng)養(yǎng)套餐.套餐C單價(jià)比套餐A5元,三種套餐的單價(jià)均為整數(shù),其中A套餐比C套餐少賣(mài)12份,B套餐比C套餐少賣(mài)6份,且C套餐當(dāng)天賣(mài)出的數(shù)量大于26且不超過(guò)32,當(dāng)天總銷(xiāo)售量為偶數(shù)且當(dāng)天銷(xiāo)售額達(dá)到了1830元,商家發(fā)現(xiàn)C套餐很受歡迎,因此在6號(hào)加推出了C套餐升級(jí)版D套餐,四種套餐同時(shí)售賣(mài),A套餐比5號(hào)銷(xiāo)售量減少,C套餐比5號(hào)銷(xiāo)售量增加,且A減少的份數(shù)比C套餐增加的份數(shù)多5份,B套餐銷(xiāo)售量不變,由于商家人手限制,兩天的總銷(xiāo)售量相同,則其他套餐單價(jià)不變的情況下,D套餐至少比C套餐費(fèi)貴______時(shí),才能使6號(hào)銷(xiāo)售額達(dá)到1950元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+x+3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C:連接BC,點(diǎn)P為線段BC上方拋物線上的一動(dòng)點(diǎn),連接OPBC于點(diǎn)Q

1)如圖1,當(dāng)值最大時(shí),點(diǎn)E為線段AB上一點(diǎn),在線段BC上有兩動(dòng)點(diǎn)M,NMN上方),且MN=1,求PM+MN+NE-BE的最小值;

2)如圖2,連接AC,將AOC沿射線CB方向平移,點(diǎn)AC,O平移后的對(duì)應(yīng)點(diǎn)分別記作A1,C1O1,當(dāng)C1B=O1B時(shí),連接A1B、O1B,將A1O1B繞點(diǎn)O1沿順時(shí)針?lè)较蛐D(zhuǎn)90°后得A2O1B1在直線x=上是否存在點(diǎn)K,使得A2B1K為等腰三角形?若存在,直接寫(xiě)出點(diǎn)K的坐標(biāo);不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“C919”大型客機(jī)首飛成功,激發(fā)了同學(xué)們對(duì)航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機(jī)機(jī)翼圖紙,圖中ABCD,AMBNED,AEDE,請(qǐng)根據(jù)圖中數(shù)據(jù),求出線段BECD的長(zhǎng).(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點(diǎn)后一位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)PPA,PB,分別與以OA為半徑的半圓切于A,B,延長(zhǎng)AO交切線PB于點(diǎn)C,交半圓與于點(diǎn)D

1)若PC=5,AC=4,求BC的長(zhǎng);

2)設(shè)DC:AD=1:2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】乒乓球是我國(guó)的國(guó)球,比賽采用單局11分制,是一種世界流行的球類(lèi)體育項(xiàng)目,比賽分團(tuán)體、單打、雙打等數(shù)種在某站公開(kāi)賽中,某直播平臺(tái)同時(shí)直播4場(chǎng)男單四分之一比賽,四場(chǎng)比賽的球桌號(hào)分別為T1T2、T3T4(假設(shè)4場(chǎng)比賽同時(shí)開(kāi)始),小寧和父親準(zhǔn)備一同觀看其中的某一場(chǎng)比賽,但兩人的意見(jiàn)不統(tǒng)一,于是采用抽簽的方式?jīng)Q定,抽簽規(guī)則如下:將正面分別寫(xiě)有數(shù)字“1、“2”、“3”、“4”的四張卡片(除數(shù)字不同外,其余均相同,數(shù)字“1”“2”、“3”、“4”分別對(duì)應(yīng)球桌號(hào)(T1、T2T3、T4(背面朝上洗勻,父親先從中隨機(jī)抽取一張,小寧再?gòu)氖O碌?/span>3張卡片中隨機(jī)抽取一張,比較兩人所抽卡片上的數(shù)字,觀看較大的數(shù)字對(duì)應(yīng)球桌的比賽

1)下列事件中屬于必然事件的是   

A.抽到的是小寧最終想要看的一場(chǎng)比賽的球桌號(hào)

B.抽到的是父親最終想要看的一場(chǎng)比賽的球桌號(hào)

C.小寧和父親抽到同一個(gè)球桌號(hào)

D.小寧和父親抽到的球桌號(hào)不一樣

2)用列表法或樹(shù)狀圖法求小寧和父親最終觀看T4球桌比賽的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°至24°的桌面有利于學(xué)生保持軀體自然姿勢(shì).根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度得桌面.新桌面的設(shè)計(jì)圖如圖1,可繞點(diǎn)旋轉(zhuǎn),在點(diǎn)處安裝一根長(zhǎng)度一定且處固定,可旋轉(zhuǎn)的支撐臂,

1)如圖2,當(dāng)時(shí),,求支撐臂的長(zhǎng);

2)如圖3,當(dāng)時(shí),求的長(zhǎng).(結(jié)果保留根號(hào))

(參考數(shù)據(jù):,,,

查看答案和解析>>

同步練習(xí)冊(cè)答案