【題目】下面是小明設(shè)計的“在一個平行四邊形內(nèi)作菱形”的尺規(guī)作圖過程.
已知:四邊形是平行四邊形.
求作:菱形(點在上,點在上).
作法:①以為圓心,長為半徑作弧,交于點;
②以為圓心,長為半徑作弧,交于點;
③連接.所以四邊形為所求作的菱形.
根據(jù)小明設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵,,
∴ = .
在中,.
即.
∴四邊形為平行四邊形.
∵,
∴四邊形為菱形( )(填推理的依據(jù)).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一時鐘,時針OA長為6cm,分針OB長為8cm,△OAB隨著時間的變化不停地改變形狀.求:
(1)如圖①,13點時,△OAB的面積是多少?
(2)如圖②,14點時,△OAB的面積比13點時增大了還是減少了?為什么?
(3)問多少整點時,△OAB的面積最大?最大面積是多少?請說明理由.
(4)設(shè)∠BOA=α(0°≤α≤180°),試歸納α變化時△OAB的面積有何變化規(guī)律(不證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是BC的中點,點E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是_______(只填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.
(1)如圖①,當∠ABC=45°時,求證:AD=DE;理由;
(2)如圖②,當∠ABC=30°時,線段AD與DE有何數(shù)量關(guān)系?并請說明理由;
(3)當∠ABC=α時,請直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD的邊長AB=2,BC=2,△ADE為正三角形.
若半徑為R的圓能夠覆蓋五邊形ABCDE(即五邊形ABCDE的每個頂點都在圓內(nèi)或圓上),則R的最小值是( )
A.2B.4C.2.8D.2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC于D,以AD為直徑的⊙O交AB于E,交AC于F.
(1)求證:BE=CF;
(2)若AE=4,BC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形中,對角線與相交于點,,,在菱形的外部以為邊作等邊三角形.點是對角線上一動點(點不與點重合),將線段繞點順時針方向旋轉(zhuǎn)得到線段,連接.
(1)線段的長為__________;
(2)如圖2,當點在線段上,且點,,三點在同一條直線上時,求證:;
(3)連接.若的周長為,請直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A(﹣1,0),B(3,0),交y軸的負半軸于C,頂點為D.下列結(jié)論:①2a+b=0;②2c<3b;③當m≠1時,a+b<am2+bm;④當△ABD是等腰直角三角形時,則a= ;⑤當△ABC是等腰三角形時,a的值有3個.其中正確的有( 。﹤.
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com