【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點(diǎn)E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長AB,DC交于點(diǎn)P,若PB=OB,CD=2,求⊙O的半徑.
【答案】(1)見解析,(2)⊙O的半徑為4.
【解析】
(1)由DC2=CECA和∠ACD=∠DCE,可判斷△CAD∽△CDE,得到∠CAD=∠CDE,再根據(jù)圓周角定理得∠CAD=∠CBD,所以∠CDB=∠CBD,于是利用等腰三角形的判定可得BC=DC;
(2)連結(jié)OC,如圖,設(shè)⊙O的半徑為r,先證明OC∥AD,利用平行線分線段成比例定理得到=2,則PC=2CD=4,然后證明△PCB∽△PAD,利用相似比得到,再利用比例的性質(zhì)可計(jì)算出r的值.
(1)證明:∵DC2=CECA,
∴,
而∠ACD=∠DCE,
∴△CAD∽△CDE,
∴∠CAD=∠CDE,
∵∠CAD=∠CBD,
∴∠CDB=∠CBD,
∴BC=DC;
(2)連結(jié)OC,如圖,
設(shè)⊙O的半徑為r,
∵CD=CB,
∴,
∴∠BOC=∠BAD,
∴OC∥AD,
∴==2,
∴PC=2CD=4,
∵∠PCB=∠PAD,∠CPB=∠APD,
∴△PCB∽△PAD,
∴,即,
∴r=4,
即⊙O的半徑為4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于A、B兩點(diǎn),點(diǎn)P在函數(shù)的圖象上,若△PAB為直角三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)為( ).
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是邊長為的正方形ABCD的對角線BD上的動(dòng)點(diǎn),過點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF⊥DC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EF交AH于點(diǎn)G,當(dāng)點(diǎn)P在BD上運(yùn)動(dòng)時(shí)(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結(jié)論是( 。
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(2m+1)x-1+m2=0有實(shí)數(shù)根,
(1)求m的取值范圍;
(2)若方程的一個(gè)根為1,求m的值及方程的另一個(gè)根;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,弓形ABC中,∠BAC=60°,BC=2,若點(diǎn)P在優(yōu)弧BAC上由點(diǎn)B向點(diǎn)C移動(dòng),記△PBC的內(nèi)心為I,點(diǎn)I隨點(diǎn)P的移動(dòng)所經(jīng)過的路程為m,則m的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)李飛與劉亮射擊訓(xùn)練的成績繪制了如圖所示的折線統(tǒng)計(jì)圖.根據(jù)圖中所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應(yīng)推薦______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表
分組 | 頻數(shù) |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中a= ,b= ,樣本成績的中位數(shù)落在 范圍內(nèi);
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)該校九年級共有850名學(xué)生,估計(jì)該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,且AB=2CD,E是AB的中點(diǎn),F是邊BC上的動(dòng)點(diǎn),EF與BD相交于點(diǎn)M.
(1)求證:△EDM∽△FBM;
(2)若F是BC的中點(diǎn),BD=12,求BM的長;
(3)若AD=BC,BD平分∠ABC,點(diǎn)P是線段BD上的動(dòng)點(diǎn),是否存在點(diǎn)P使DPBP=BFCD,若存在,求出∠CPF的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線,與x軸交于點(diǎn)C,點(diǎn)C在點(diǎn)D的左側(cè),與y軸交于點(diǎn)A.
求拋物線頂點(diǎn)M的坐標(biāo);
若點(diǎn)A的坐標(biāo)為,軸,交拋物線于點(diǎn)B,求點(diǎn)B的坐標(biāo);
在的條件下,將拋物線在B,C兩點(diǎn)之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個(gè)交點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com