【題目】如圖,四邊形ABCD內(nèi)接于⊙OAB是⊙O的直徑,ACBD相交于點(diǎn)E,且DC2CECA

1)求證:BCCD

2)分別延長AB,DC交于點(diǎn)P,若PBOBCD2,求⊙O的半徑.

【答案】1)見解析,(2)⊙O的半徑為4

【解析】

1)由DC2=CECA和∠ACD=DCE,可判斷△CAD∽△CDE,得到∠CAD=CDE,再根據(jù)圓周角定理得∠CAD=CBD,所以∠CDB=CBD,于是利用等腰三角形的判定可得BC=DC

2)連結(jié)OC,如圖,設(shè)⊙O的半徑為r,先證明OCAD,利用平行線分線段成比例定理得到=2,則PC=2CD=4,然后證明△PCB∽△PAD,利用相似比得到,再利用比例的性質(zhì)可計(jì)算出r的值.

1)證明:∵DC2CECA,

,

而∠ACD=∠DCE

∴△CAD∽△CDE,

∴∠CAD=∠CDE,

∵∠CAD=∠CBD,

∴∠CDB=∠CBD,

BCDC;

2)連結(jié)OC,如圖,

設(shè)⊙O的半徑為r

CDCB,

∴∠BOC=∠BAD,

OCAD

2,

PC2CD4,

∵∠PCB=∠PAD,∠CPB=∠APD,

∴△PCB∽△PAD

,即,

r4,

即⊙O的半徑為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸交于A、B兩點(diǎn),點(diǎn)P在函數(shù)的圖象上,若PAB為直角三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)為( ).

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是邊長為的正方形ABCD的對角線BD上的動(dòng)點(diǎn),過點(diǎn)P分別作PEBC于點(diǎn)E,PFDC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EFAH于點(diǎn)G,當(dāng)點(diǎn)PBD上運(yùn)動(dòng)時(shí)(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;AHEF;AP2=PMPH;EF的最小值是.其中正確結(jié)論是( 。

A. ①③ B. ②③ C. ②③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+2m+1x-1+m2=0有實(shí)數(shù)根,

1)求m的取值范圍;

2)若方程的一個(gè)根為1,求m的值及方程的另一個(gè)根;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,弓形ABC中,∠BAC60°,BC2,若點(diǎn)P在優(yōu)弧BAC上由點(diǎn)B向點(diǎn)C移動(dòng),記△PBC的內(nèi)心為I,點(diǎn)I隨點(diǎn)P的移動(dòng)所經(jīng)過的路程為m,則m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)李飛與劉亮射擊訓(xùn)練的成績繪制了如圖所示的折線統(tǒng)計(jì)圖.根據(jù)圖中所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應(yīng)推薦______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表

分組

頻數(shù)

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

請根據(jù)圖表中所提供的信息,完成下列問題:

(1)表中a   ,b   ,樣本成績的中位數(shù)落在   范圍內(nèi);

(2)請把頻數(shù)分布直方圖補(bǔ)充完整;

(3)該校九年級共有850名學(xué)生,估計(jì)該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,且AB2CD,EAB的中點(diǎn),F是邊BC上的動(dòng)點(diǎn),EFBD相交于點(diǎn)M

(1)求證:△EDM∽△FBM;

(2)FBC的中點(diǎn),BD12,求BM的長;

(3)ADBC,BD平分∠ABC,點(diǎn)P是線段BD上的動(dòng)點(diǎn),是否存在點(diǎn)P使DPBPBFCD,若存在,求出∠CPF的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線,與x軸交于點(diǎn)C,點(diǎn)C在點(diǎn)D的左側(cè),與y軸交于點(diǎn)A

求拋物線頂點(diǎn)M的坐標(biāo);

若點(diǎn)A的坐標(biāo)為軸,交拋物線于點(diǎn)B,求點(diǎn)B的坐標(biāo);

的條件下,將拋物線在BC兩點(diǎn)之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個(gè)交點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案