【題目】如圖,ABCD,且AB2CD,EAB的中點(diǎn),F是邊BC上的動(dòng)點(diǎn),EFBD相交于點(diǎn)M

(1)求證:△EDM∽△FBM;

(2)FBC的中點(diǎn),BD12,求BM的長;

(3)ADBCBD平分∠ABC,點(diǎn)P是線段BD上的動(dòng)點(diǎn),是否存在點(diǎn)P使DPBPBFCD,若存在,求出∠CPF的度數(shù);若不存在,請(qǐng)說明理由.

【答案】(1)證明見解析;(2)BM4;(3)存在,∠CPF30°.

【解析】

(1)根據(jù)題意及中點(diǎn)的性質(zhì)得出四邊形CBED是平行四邊形,根據(jù)平行的性質(zhì)得出∠EDB=∠FBM,∠DME=∠BMF,從而得出EDM∽△FBM;

(2)根據(jù)(1)中三角形相似的比例關(guān)系即可推理得出答案;

3)先由角平分線的定義和平行線的性質(zhì)可得DCBC,結(jié)合DPBPBFCD可證明△PDC∽△FBP,從而∠BPF=∠PCD,利用三角形內(nèi)角和及平角定義可證∠PDC=∠CPF,然后通過證明△ADE是等邊三角形,可進(jìn)一步求出結(jié)論.

(1)證明:∵AB2CD,點(diǎn)EAB的中點(diǎn),

DCEB

又∵ABCD,

∴四邊形BCDE為平行四邊形.

EDBC

∴∠EDB=∠FBM

又∵∠DME=∠BMF,

∴△EDM∽△FBM

(2)解:∵△EDM∽△FBM,

FBC的中點(diǎn),

DEBC2BF

DM2BM,

DBDM+BM3BM,

DB12,

BMDB×124;

(3)存在,∵DCAB,

∴∠CDB=∠ABD,

BD平分∠ABC,

∴∠CBD=∠ABD,

∴∠CDB=∠CBD

DCBC,

DPBPBFCD,

,

∴△PDC∽△FBP

∴∠BPF=∠PCD,

∵∠DPC+CPF+BPF180°,

DPC+PDC+PCD180°,

∴∠PDC=∠CPF

ADBCDCBEAE,

∴△ADE是等邊三角形,

∴∠AED60°,

∴∠EDB=∠PDC30°,

∴∠CPF30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0),AB=4

(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;

(2)點(diǎn)M是二次函數(shù)對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)點(diǎn)M運(yùn)動(dòng)到什么位置時(shí),△ACM的周長最小?求出此時(shí)M點(diǎn)的坐標(biāo);

(3)點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,ACBD相交于點(diǎn)E,且DC2CECA

1)求證:BCCD;

2)分別延長AB,DC交于點(diǎn)P,若PBOB,CD2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)改善生態(tài)環(huán)境,實(shí)行生活垃圾的分類處理,將生活垃圾分成三類:廚房垃圾、可回收垃圾和其他垃圾,分別記為m,n,p,并且設(shè)置了相應(yīng)的垃圾箱,“廚房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為A,B,C.

(1)若將三類垃圾隨機(jī)投入三類垃圾箱,請(qǐng)用畫樹狀圖的方法求垃圾投放正確的概率;

(2)為了了解居民生活垃圾分類投放的情況,現(xiàn)隨機(jī)抽取了小區(qū)三類垃圾箱中總共1 000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):

A

B

C

m

400

100

100

n

30

240

30

p

20

20

60

請(qǐng)根據(jù)以上信息,試估計(jì)“廚房垃圾”投放正確的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB10cm,弦BC=8cm,∠ACB的平分線交⊙O于點(diǎn)D.連接AD,BD.求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖有兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤,A,B兩個(gè)轉(zhuǎn)盤被分成幾個(gè)面積相等的扇形,并且在每個(gè)扇形內(nèi)標(biāo)上數(shù)字,轉(zhuǎn)動(dòng)轉(zhuǎn)盤后,如果指針指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一個(gè)扇形內(nèi)為止.

1)只轉(zhuǎn)動(dòng)A轉(zhuǎn)盤,轉(zhuǎn)盤停止后指針指向數(shù)字2的概率.

2)如果同時(shí)轉(zhuǎn)動(dòng)AB兩個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,將兩個(gè)指針?biāo)傅臄?shù)字相加,那么和是偶數(shù)的概率是多少,用樹形圖或表格說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k為常數(shù),k≠0)的圖象交于A、B兩點(diǎn),過點(diǎn)AACx軸,垂足為C,連接OA,已知OC=2,tanAOC=,B(m,﹣2)

(1)求一次函數(shù)和反比例函數(shù)的解析式.

(2)結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的弦ADBC,過點(diǎn)D的切線交BC的延長線于點(diǎn)E,ACDEBD于點(diǎn)H,DO及延長線分別交AC、BC于點(diǎn)G、F

(1)求證:DF垂直平分AC

(2)求證:FCCE;

(3)若弦AD5cm,AC8cm,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,連接ED,DG.

(1)請(qǐng)判斷四邊形EBGD的形狀,并說明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,點(diǎn)H是BD上的一個(gè)動(dòng)點(diǎn),求HG+HC的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案