【題目】如圖,在中,AB=10cm,BC=8cm,點P從點A沿AC向點C1cm/s的速度運動,同時點Q從點C沿CB向點B2cm/s的速度運動(點Q運動到點B停止)。則四邊形PABQ的面積y()與運動時間x(s)之間的函數(shù)圖象為(

A. B.

C. D.

【答案】C

【解析】

RtABC中,利用勾股定理可得出AC=6cm,設(shè)運動時間為x0x4),則PC=6-xcm,CQ=2xcm,利用分割圖形求面積法可得出S四邊形PABQ=x2-6x+24,根據(jù)函數(shù)解析式可得函數(shù)圖象為拋物線即可得答案.

解:在RtABC中,∠C=90°,AB=10cm,BC=8cm,

AC==6cm,

設(shè)運動時間為x0x4),則PC=6-xcm,CQ=2xcm,

S四邊形PABQ=SABC-SCPQ

=ACBC-PCCQ

=×6×8-×6-x×2x

=x2-6x+24

=x-32+15.

根據(jù)函數(shù)解析式可得函數(shù)圖象應(yīng)為:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】兩棟居民樓之間的距離CD=30米,樓ACBD均為10層,每層樓高3米.

(1)上午某時刻,太陽光線GB與水平面的夾角為30°,此刻B樓的影子落在A樓的第幾層?

(2)當太陽光線與水平面的夾角為多少度時,B樓的影子剛好落在A樓的底部.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校數(shù)學課外實踐小組一次活動中,測量一座樓房的高度.如圖,在山坡坡腳A處測得這座樓房的樓頂B點的仰角為60°,沿山坡往上走到C處再測得B點的仰角為45°,已知山坡的坡比i1OA200m,且OA、D在同一條直線上.

(1)求樓房OB的高度;

(2)求山坡上AC的距離(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB4,BC6,點EAB邊上,將紙片沿CE折疊,點B落在點F處,EF,CF分別交AD于點G,H,且EGGH,則AE的長為( )

A. B. 1C. D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】受地震的影響,某超市雞蛋供應(yīng)緊張,需每天從外地調(diào)運雞蛋1200斤.超市決定從甲、乙兩大型養(yǎng)殖場調(diào)運雞蛋,已知甲養(yǎng)殖場每天最多可調(diào)出800斤,乙養(yǎng)殖場每天最多可調(diào)出900斤,從兩養(yǎng)殖場調(diào)運雞蛋到超市的路程和運費如表:

到超市的路程(千米)

運費(/千米)

甲養(yǎng)殖場

200

0.012

乙養(yǎng)殖場

140

0.015

(1)若某天調(diào)運雞蛋的總運費為2670元,則從甲、乙兩養(yǎng)殖場各調(diào)運了多少斤雞蛋?

(2)設(shè)從甲養(yǎng)殖場調(diào)運雞蛋x斤,總運費為W元,試寫出Wx的函數(shù)關(guān)系式,怎樣安排調(diào)運方案才能使每天的總運費最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在ABC中,ABAC,點DAB上一點,以BD為直徑的⊙0AC邊相切于點E,交BC于點F,FGAC于點G

1)如圖l,求證:GEGF;

2)如圖2,連接DE,∠GFC2AED,求證:ABC為等邊三角形;

3)如圖3,在(2)的條件下,點HK、P分別在AB、BC、AC上,AK、BP分別交CH于點M、N,AHBK,∠PNCBAK60°,CN6CM4,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】滴滴快車是一種便捷的出行工具,某地區(qū)計價規(guī)則如表:

計費項目

里程費

時長費

遠途費

單價

1.8/公里

0.3/分鐘

0.8/公里

注:車費由里程費、時長費、遠途費三部分構(gòu)成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(nèi)(含7公里)不收遠途費,超過7公里的,超出部分每公里收0.8元.

小明與小亮各自乘坐滴滴快車,行車里程分別為6公里與8公里,如果下車時兩人所付車費相同,那么這兩輛滴滴快車的行車時間相差_____分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,O為坐標原點,拋物線yax22ax3a分別交x軸于A、B兩點(點A在點B的側(cè)),與y軸交于點C,連接AC,tanACO

1)如圖l,求a的值;

2)如圖2,D是第一象限拋物線上的點,過點Dy軸的平行線交CB的延長線于點E,連接AEBD于點FAEBD,求點D的坐標;

3)如圖3,在(2)的條件下,連接AD,P是第一象限拋物線上的點(點P與點D不重合),過點PAD的垂線,垂足為Q,交x軸于點N,點Mx軸上(點M在點N的左側(cè)),點GNP的延長線上,MPOG,∠MPN﹣∠MOG45°,MN10.點SAQN內(nèi)一點,連接AS、QS、NSASAQ,QSSN,求QS的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m.水面下降2.5m,水面寬度增加_____m

查看答案和解析>>

同步練習冊答案