【題目】已知:在ABC中,ABAC,點DAB上一點,以BD為直徑的⊙0AC邊相切于點E,交BC于點F,FGAC于點G

1)如圖l,求證:GEGF;

2)如圖2,連接DE,∠GFC2AED,求證:ABC為等邊三角形;

3)如圖3,在(2)的條件下,點H、KP分別在AB、BCAC上,AK、BP分別交CH于點MN,AHBK,∠PNCBAK60°,CN6CM4,求BC的長.

【答案】1)見解析;(2)見解析;(3BC10.

【解析】

1)由切線的定義得到直角條件,由半徑相等可證OFGE為正方形;

2)由圓周角定理可得直角條件,由2倍角關(guān)系可得60°條件,從而證明等邊三角形;

3)結(jié)合(2)的結(jié)論和條件中角的關(guān)系,需要設(shè)置角參數(shù),標(biāo)識圖形從而發(fā)現(xiàn)BCBR,用勾股定理建立方程關(guān)系,求解方程即可.

解:(1)如圖1,連接OEOF

AC是⊙O的切線

OEAC,

∴∠OEG90°

FGAC,

∴∠FGE90°

ABAC

∴∠ABC=∠ACB

OBOF,

∴∠OBF=∠OFB

∴∠OFB=∠ACB

OFAC

∴∠OFG+FGE180°,

∴∠OFG90°

∴∠OFG=∠FGE=∠OEG90°

∴四邊形OFGE為矩形

OFOE,

∴四邊形OFGE為正方形

GEGF

2)如圖2,連接OE,BE

BD是⊙O的直徑,

∴∠BED90°

∴∠OED+OEB90°

∵∠OEG90°

∴∠AED+OED90°

∵∠OEG90°,

∴∠AED+OED90°

∴∠OEB=∠AED

OBOE,

∴∠OBE=∠OEB

∴∠OBE=∠AED

∴∠AOE2OEB2AED

∵∠GFC2AED

∴∠AOE=∠GFC

∵∠C+GFC90°,∠A+AOE90°

∴∠C=∠A

BABC,

ABAC

ABACBC

∴△ABC為等邊三角形

3)∵△ABC為等邊三角形

∴∠CAH=∠ABK60°

AHBK,ACAB,

∴△CAH≌△ABKSAS

∴∠ACH=∠BAK

∵∠KMC=∠KAC+ACM

∴∠KMC=∠KAC+BAK60°

過點CCQAK,垂足為Q,過點BBTCH,垂足為T

∴∠AQC=∠CTB90°

∵∠QAC=∠BAC﹣∠BAK60°,∠TCB=∠ACB﹣∠ACH60°﹣∠ACH

∴∠QAC=∠TCB

ACBC

∴△AQC≌△CTBAAS

QCBT

RtMQC中,

CM4,∠QMC60°,sinQMC

QC6

設(shè)∠BAK=∠ACH

∵∠PNCBAK60°,

∴∠PNC60°+α=∠BNH

∴∠BCH=∠ACB﹣∠ACH60°

延長NH到點R,使RTTN,連接BR

BT使RN的垂直平分線

BRBN

∴∠BNR=∠BRN60°+α

∴∠CBR180°﹣∠BCR﹣∠CRB60°+α

∴∠CBR=∠CRB60°+α

BCRC

設(shè)TNRTa,

CN6

CTa+6CRCB2a+6

CQBT6

RtBTC

BT2+TC2BC2

62+a+62=(2a+62

a1=﹣6(舍),a22

TN2

BC10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片重合放置,其中,

1)操作發(fā)現(xiàn)

如圖2,固定,使繞點旋轉(zhuǎn),當(dāng)點恰好落在邊上時,填空:

①線段的位置關(guān)系是______;

②設(shè)的面積為,的面積為,則的數(shù)量關(guān)系是______

2)猜想論證

當(dāng)繞點旋轉(zhuǎn)到如圖3所示的位置時,小明猜想1.中的數(shù)量關(guān)系仍然成立,并嘗試分別作出了、邊上的高,請你證明小明的猜想.

3)拓展探究

已知∠ABC=60°,點是角平分線上一點,,于點(如圖4).若在射線上存在點,使,請求出相應(yīng)的的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線ACBD交于點O,CE平分∠BCDAB于點E,交BD于點F,且∠ABC60°,AB2BC,連接OE.下列結(jié)論:①EOAC;②SAOD4SOCF;③ACBD7;④FB2OFDF.其中正確的是(

A.①②④B.①③④C.②③④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[知識回顧]

七年級學(xué)習(xí)代數(shù)式求值時,遇到這樣一類題 “代數(shù)式的值與的取值無關(guān),求的值”,通常的解題方法是:把看作字母,看作系數(shù)合并同類項,因為代數(shù)式的值與的取值無關(guān),所以含項的系數(shù)為,即原式,所以,則

[理解應(yīng)用]

若關(guān)于的多項式的值與的取值無關(guān),試求的值:

若一次函數(shù)的圖像經(jīng)過某個定點,則該定點坐標(biāo)為 ;

[能力提升]

張如圖1的小長方形,長為,寬為,按照圖2方式不重疊地放在大矩形內(nèi),大矩形中未被覆蓋的兩個部分(圖中陰影部分) ,設(shè)右上角的面積為,左下角的面積為,當(dāng)的長變化時,的值始終保持不變,求的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點EBC上一點,連接AE,點FAE上一點,連接FC,若∠BAE=∠EFC,CFCDABBC32,AF4,則FC的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項目對全班學(xué)生進行調(diào)查(每名學(xué)生分別選一個活動項目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

根據(jù)以上信息解決下列問題:

(1) , ;

(2)扇形統(tǒng)計圖中機器人項目所對應(yīng)扇形的圓心角度數(shù)為 ;

(3)從選航模項目的名學(xué)生中隨機選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,ABCD,BD平分∠ABC,BDDC

1)求出sinDBC的值;

2)若AD=2,把∠BOC繞點O順時針旋轉(zhuǎn)),交AB于點M,交BC于點N(如圖),求證:四邊形OMBN的面積為一個定值,并求出這個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在新中國成立70周年之際,某校開展了校園文化藝術(shù)活動,活動項目有:書法、繪畫、聲樂和器樂,要求全校學(xué)生人人參加,并且每人只能參加其中一項活動,政教處在該校學(xué)生中隨機抽取了100名學(xué)生進行調(diào)查和統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:

1)請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

2)該校初中學(xué)生中,參加書法項目的學(xué)生所占的百分比是多少?

3)若該校共有1500人,請估計其中參加器樂項目的高中學(xué)生有多少人?

4)經(jīng)政教處對所有參加繪畫項目的作品進行評比,共選出2名初中學(xué)生和2名高中學(xué)生的最佳作品,學(xué)校決定從這4名學(xué)生中隨機抽取2人作為學(xué)生會繪畫社團的團生,那么正好抽到一名初中學(xué)生和一名高中學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(1)班全體學(xué)生2018年初中畢業(yè)體育學(xué)業(yè)考試成績統(tǒng)計表如下:

成績/

45

49

52

54

55

58

60

人數(shù)

2

5

6

6

8

7

6

根據(jù)上表中信息判斷,下列結(jié)論中錯誤的是( 。

A.該班一共有40名同學(xué)

B.該班學(xué)生這次考試成績的眾數(shù)是55

C.該班學(xué)生這次考試成績的中位數(shù)是55

D.該班學(xué)生這次考試成績的平均數(shù)是55

查看答案和解析>>

同步練習(xí)冊答案