【題目】兩棟居民樓之間的距離CD=30米,樓ACBD均為10層,每層樓高3米.

(1)上午某時(shí)刻,太陽(yáng)光線GB與水平面的夾角為30°,此刻B樓的影子落在A樓的第幾層?

(2)當(dāng)太陽(yáng)光線與水平面的夾角為多少度時(shí),B樓的影子剛好落在A樓的底部.

【答案】(1)此刻B樓的影子落在A樓的第5層;(2)當(dāng)太陽(yáng)光線與水平面的夾角為45度時(shí),B樓的影子剛好落在A樓的底部.

【解析】(1)延長(zhǎng)BG,交AC于點(diǎn)F,過(guò)F作FH⊥BD于H,利用直角三角形的性質(zhì)和三角函數(shù)解答即可;

(2)連接BC,利用利用直角三角形的性質(zhì)和三角函數(shù)解答即可.

(1)延長(zhǎng)BG,交AC于點(diǎn)F,過(guò)F作FH⊥BD于H,

由圖可知,F(xiàn)H=CD=30m,

∵∠BFH=∠α=30°,

在Rt△BFH中,BH=FH=10≈17.32,

≈5.8,

答:此刻B樓的影子落在A樓的第5層;

(2)連接BC,∵BD=3×10=30=CD,

∴∠BCD=45°,

答:當(dāng)太陽(yáng)光線與水平面的夾角為45度時(shí),B樓的影子剛好落在A樓的底部.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,EBC邊上一點(diǎn),且AB=AE

1)求證:△ABC≌△EAD

2)若AE平分∠DAB,∠EAC=25°,求∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC 中,∠ACB=90°,AC=6cm,BC=8cm,點(diǎn) P A 點(diǎn)出發(fā)沿 A-C-B 路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為 B點(diǎn);點(diǎn) Q B 點(diǎn)出發(fā)沿 B-C-A 路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為 A 點(diǎn),點(diǎn) P Q 分別以 1cm/s xcm / s 的運(yùn)動(dòng)速度 同時(shí)開(kāi)始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò) P Q PE⊥ l E,QF⊥ l F.

(1)如圖,當(dāng) x 2 時(shí),設(shè)點(diǎn) P 運(yùn)動(dòng)時(shí)間為 ts ,當(dāng)點(diǎn) P AC 上,點(diǎn) Q BC 上時(shí):

用含 t 的式子表示 CP CQ,則 CP= cm,CQ= cm

當(dāng) t 2 時(shí),PEC QFC 全等嗎?并說(shuō)明理由;

(2)請(qǐng)問(wèn):當(dāng) x 3 時(shí),PEC QFC 有沒(méi)有可能全等?若能,直接寫(xiě)出符合條件的 t 的值;若不能,請(qǐng)說(shuō)明 理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在直線上,點(diǎn)在直線上,

如圖①,若,判斷的位置關(guān)系,并說(shuō)明理由;

圖②,在的結(jié)論下,上有一點(diǎn),且,判斷的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABC中,∠B=90°,A=60°,AC=2+4,點(diǎn)M、N分別在線段AC、AB上,將ANM沿直線MN折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線段BC上,當(dāng)DCM為直角三角形時(shí),折痕MN的長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家需要用鋼管做防盜窗,按設(shè)計(jì)要求,其中需要長(zhǎng)為 0.8m,2.5m 且粗細(xì)相同的鋼管分別為 100 根,32 根,并要求這些用料不能是焊接而成的.現(xiàn)鋼材市場(chǎng)的這種規(guī)格的鋼管每根為 6m

1)試問(wèn)一根 6m 長(zhǎng)的圓鋼管有哪些裁剪方法呢?請(qǐng)?zhí)顚?xiě)下空(余料作廢).

方法①:當(dāng)只裁剪長(zhǎng)為 0.8m 的用料時(shí),最多可剪 根;

方法②:當(dāng)先剪下 1 2.5m 的用料時(shí),余下部分最多能剪 0.8m 長(zhǎng)的用料 根;

方法③:當(dāng)先剪下 2 2.5m 的用料時(shí),余下部分最多能剪 0.8m 長(zhǎng)的用料 根.

2)分別用(1)中的方法②和方法③各裁剪多少根 6m 長(zhǎng)的鋼管,才能剛好得到所需要的相應(yīng)數(shù)量的材料?

3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要 6m 長(zhǎng)的鋼管與(2 中根數(shù)相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線ACBD交于點(diǎn)O.過(guò)點(diǎn)CBD的平行線,過(guò)點(diǎn)DAC的平行線,兩直線相交于點(diǎn)E.

(1)求證:四邊形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是⊙O外的一點(diǎn),PA、PB是⊙O的兩條切線,A、B是切點(diǎn),POAB于點(diǎn)F,延長(zhǎng)BO交⊙O于點(diǎn)C,交PA的延長(zhǎng)交于點(diǎn)Q,連結(jié)AC.

(1)求證:ACPO;

(2)設(shè)DPB的中點(diǎn),QDAB于點(diǎn)E,若⊙O的半徑為3,CQ=2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點(diǎn)A(m,3)、B(﹣6,n),與x軸交于點(diǎn)C.

(1)求一次函數(shù)y=kx+b的關(guān)系式;

(2)結(jié)合圖象,直接寫(xiě)出滿足kx+b>的x的取值范圍;

(3)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案