【題目】如圖,拋物線軸于,交軸于,直線平行于軸,與拋物線另一個(gè)交點(diǎn)為

1)求拋物線的函數(shù)表達(dá)式及點(diǎn)D的坐標(biāo);

2)若拋物線與拋物線關(guān)于軸對(duì)稱,軸上的動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn),使得以為頂點(diǎn)且為邊的四邊形是平行四邊形,若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

【答案】1;(23)(2)存在;((

【解析】

1)利用點(diǎn)A,B的坐標(biāo)設(shè)拋物線的交點(diǎn)式解析式,再將點(diǎn)C代入即可求解,再令,即可求出D點(diǎn)坐標(biāo);

2)先求出拋物線的解析式,再過點(diǎn)軸于點(diǎn),過點(diǎn)軸于點(diǎn),根據(jù)平行四邊形的性質(zhì)可得,進(jìn)而證明得到,故可求出N點(diǎn)坐標(biāo).

:(1),則,

設(shè)拋物線的函數(shù)表達(dá)式,

將點(diǎn)代人,

得,,

解得,,

拋物線的函數(shù)表達(dá)式為

,即,解得

(2)∵拋物線與拋物線關(guān)于軸對(duì)稱,

拋物線的函數(shù)表達(dá)式為

過點(diǎn)軸于點(diǎn),過點(diǎn)軸于點(diǎn),

當(dāng)以為頂點(diǎn)且為邊的四邊形是平行四邊形時(shí),,

∴∠DBE=NMF,

又∠DEB=NFM=90°

,即

當(dāng)時(shí),

解得

,

當(dāng)時(shí),

解得,

綜上,滿足條件的點(diǎn)的坐標(biāo)為((

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,∠BAC45°,ADBC于點(diǎn)D,延長(zhǎng)AD交⊙O于點(diǎn)E,若BD4,CD1,則DE的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,∠A=∠CBD

1)求證:BC是⊙O的切線.

2)若∠C35°,AB6,求的長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點(diǎn)D,交BC于點(diǎn)E,已知A,0),∠DOE=30°,則k的值為(

A.B.C.3D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為分別是邊上的動(dòng)點(diǎn),交于點(diǎn)

如圖(1),若為邊的中點(diǎn), 的長(zhǎng);

如圖(2),若點(diǎn)上從運(yùn)動(dòng),點(diǎn).上從運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),同時(shí)到達(dá)各自終點(diǎn),求在運(yùn)動(dòng)過程中,點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng):

如圖(3), 分別是邊上的中點(diǎn),交于點(diǎn),求的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD6,AB4,以AD為直徑在矩形內(nèi)作半圓,點(diǎn)E為半圓上的一動(dòng)點(diǎn)(不與A、D重合),連接DE、CE,當(dāng)△DEC為等腰三角形時(shí),DE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2bxcx軸交于A(-1,0),與y軸交于C0,-2);直線經(jīng)過點(diǎn)A且與拋物線交于另一點(diǎn)B

1)直接寫出拋物線的解析式 ;

2)如圖(1),點(diǎn)M是拋物線上AB兩點(diǎn)間的任一動(dòng)點(diǎn),MNAB于點(diǎn)N,試求出MN的最大值 ,并求出MN最大時(shí)點(diǎn)M的坐標(biāo);

3)如圖(2),連接AC,已知點(diǎn)P的坐標(biāo)為(2,1),點(diǎn)Q為對(duì)稱軸左側(cè)的拋物線上的一動(dòng)點(diǎn),過點(diǎn)QQFx軸于點(diǎn)F,是否存在這樣的點(diǎn)Q,使得∠FQP=∠CAO.若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+2xy軸分別交于A、C兩點(diǎn),以AC為對(duì)角線作第一個(gè)矩形ABCO,對(duì)角線交點(diǎn)為A1,再以CA1為對(duì)角線作第二個(gè)矩形A1B1CO1,對(duì)角線交點(diǎn)為A2,同法作第三個(gè)矩形A2B2CO2對(duì)角線交點(diǎn)為A3,以此類推,則第2020個(gè)矩形對(duì)角線交點(diǎn)A2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.請(qǐng)根據(jù)你對(duì)這句話的理解,解決下面問題:若m、nmn)是關(guān)于x的方程1﹣x﹣a)(x﹣b=0的兩根,且ab,則a、bm、n的大小關(guān)系是( ).

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案