【題目】如圖,正方形的邊長為分別是邊上的動點,交于點

如圖(1),若為邊的中點,, 的長;

如圖(2),若點上從運動,點.上從運動.兩點同時出發(fā),同時到達(dá)各自終點,求在運動過程中,點運動的路徑長:

如圖(3) 分別是邊上的中點,交于點,求的正切值.

【答案】;

【解析】

1)延長BF、CD交于點H,根據(jù)勾股定理求出AE,證明△AFB∽△DFH,根據(jù)相似三角形的性質(zhì)求出DH,再證明△AGB∽△EGH,最后根據(jù)相似三角形的性質(zhì)計算即可;

2)取AB的中點O,連接OG,證明△BAF≌△ADE,再確定∠AGB=90°,再根據(jù)直角三角形的性質(zhì)求出OG,最后運用弧長公式計算即可;

3)作FQBDQ,設(shè)正方形的邊長為2a,再用a表示出BQ、FQ,最后根據(jù)正切的定義即可解答.

解:(1)如圖,延長BF、CD交于點H

E為邊CD的中點

DE=DC=3

由勾股定理可得,

∵四邊形ABCD為正方形

ABCD

∴△AFB∽△DFH

AB=6,

DH=3EH=6

AB//CD

∴△AGB∽△EGH,

;

2)如圖:

AB的中點O,連接OG

由題意可得,AF=DE

在△BAF和△ADE

BA=AD, BAF=ADE,AF=DE

∴△BAF≌△ADESAS

∴∠ABF= DAE

∵∠BAG+ DAE=90°

∴∠BAG+ ABG=90°,即∠AGB=90°

∵點OAB的中點,

OG=AB=3

當(dāng)點E與點C重合、點F與得D重合時,∠AOG=90°

∴點G運動的路徑長為:;

3)如圖,作FQBDQ,設(shè)正方形的邊長為2a

∵點F是邊AD上的中點

AF=DF=a

∵四邊形ABCD為正方形

,∠ADB=45°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一塊長為40cm,寬為30cm的矩形硬紙板的四角剪去四個相同小正方形,然后把紙板的四邊沿虛線折起,并用膠帶粘好,即可做成一個無蓋紙盒.若該無蓋紙盒的底面積為600cm2,設(shè)剪去小正方形的邊長為xcm,則可列方程為(  )

A.302x)(40x)=600B.30x)(40x)=600

C.30x)(402x)=600D.302x)(402x)=600

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點C、A分別在x軸、y軸上,ABx軸,∠ACB90°,反比例函數(shù)yx0)的圖象經(jīng)過AB的中點M.若點A0,4)、C2,0),則k的值為(  )

A.16B.20C.32D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACO的直徑,PA、PBO的切線,切點分別是點A、B

1)如圖1,若∠BAC=25°,求∠P的度數(shù).

2)如圖2,若M是劣弧AB上一點,∠AMB=AOB,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式規(guī)律:① 52-22=3×7;②72-42=3×11;③ 92-62=3×11;;根據(jù)上面等式的規(guī)律:

1)寫出第6個和第n個等式;

2)證明你寫的第n個等式的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于,交軸于,直線平行于軸,與拋物線另一個交點為

1)求拋物線的函數(shù)表達(dá)式及點D的坐標(biāo);

2)若拋物線與拋物線關(guān)于軸對稱,軸上的動點,在拋物線上是否存在一點,使得以為頂點且為邊的四邊形是平行四邊形,若存在,請求出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是小明家購買的一款臺燈,現(xiàn)忽略支架的粗細(xì),得到它的側(cè)面簡化示意圖如圖(2)所示.支架AB與桌面的夾角為80°,支架AB與支架BC的夾角為100°,CD平行于桌面,支架ABBC的長度均為20cm.求燈泡頂端D到桌面的距離DE.(結(jié)果精確到1cm.參考數(shù)據(jù):sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直線上方有一個正方形,,以點為圓心,為半徑作弧,與交于點,分別以點為圓心,長為半徑作弧,兩弧交于點,連結(jié),則的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.小華的身高ED1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計算結(jié)果精確到1m)(參考數(shù)據(jù):sin15°,cos15°,tan15°)

查看答案和解析>>

同步練習(xí)冊答案