【題目】如圖,直線與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,拋物線經(jīng)過(guò)點(diǎn)A,B.

1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;

2)設(shè)點(diǎn)M(m,0)為線段OA上一動(dòng)點(diǎn),過(guò)點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)PN.

①求PN的最大值;

②若以B,P,N為頂點(diǎn)的三角形與APM相似,請(qǐng)直接寫出點(diǎn)M的坐標(biāo).

【答案】1)點(diǎn)B的坐標(biāo)為;拋物線的解析式為;(2)①PN的最大值為3;②若以BP,N為頂點(diǎn)的三角形與APM相似,點(diǎn)M的坐標(biāo)為.

【解析】

1)先將點(diǎn)A坐標(biāo)代入直線解析式求出c的值,從而可求得B點(diǎn)坐標(biāo);再由AB兩點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求得拋物線的解析式;

2)①利用點(diǎn)M坐標(biāo)、直線解析式、拋物線的解析式可求出點(diǎn)P、N的坐標(biāo),從而可求得PNm表示的代數(shù)式,利用二次函數(shù)的性質(zhì)求最大值即可;

②要使相似,則需分兩種情況討論,然后利用相似三角形對(duì)應(yīng)線段成比例求解即可.

1)將代入,解得

則直線的解析式為

,代入得

則點(diǎn)B的坐標(biāo)為

代入拋物線得:

,解得

則拋物線的解析式為;

2)①由題意得:點(diǎn)P、N的橫坐標(biāo)均為m,且

分別代入兩個(gè)解析式可得兩個(gè)點(diǎn)的坐標(biāo)為:

當(dāng)時(shí),PNm的增大而增大;當(dāng)時(shí),PNm的增大而減小

則當(dāng)時(shí),PN取得最大值,最大值為3

②在中,

如果相似,則

當(dāng)時(shí),,

解得:(舍去)或

經(jīng)檢驗(yàn),是方程的解

則點(diǎn)M的坐標(biāo)為

當(dāng)時(shí),

和兩點(diǎn)距離公式可得:

代入得:,解得:(舍去)或

經(jīng)檢驗(yàn),是方程的解

則點(diǎn)M的坐標(biāo)為

綜上,若以BP,N為頂點(diǎn)的三角形與相似,點(diǎn)M的坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四張背面完全相同的卡片,正面上分別標(biāo)有數(shù)字﹣2,﹣11,2.把這四張卡片背面朝上,隨機(jī)抽取一張,記下數(shù)字為m;放回?cái)噭,再隨機(jī)抽取一張卡片,記下數(shù)字為n,則ymx+n不經(jīng)過(guò)第三象限的概率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品現(xiàn)在的售價(jià)為每件60元,每星期可賣出300. 市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每降價(jià)1元,每星期可多賣出20. 已知商品的進(jìn)價(jià)為每件40元,如何定價(jià)才能使利潤(rùn)最大?這個(gè)最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2m+1x+m220

1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;

2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1x22+m221,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為EF,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P在∠MAN內(nèi),PA平分∠MAN,PBAM于點(diǎn)B,PCAN于點(diǎn)C,點(diǎn)D是射線AM上點(diǎn)B右側(cè)的一個(gè)定點(diǎn).

1)作經(jīng)過(guò)AP,D三點(diǎn)的圓;(保留作圖痕進(jìn),不寫作法)

2)設(shè)圓與AN交于點(diǎn)E,∠MAN60°,PA4,求AE+AD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某自行車經(jīng)銷商計(jì)劃投入7.1萬(wàn)元購(gòu)進(jìn)100A型和30B型自行車,其中B型車單價(jià)是A型車單價(jià)的6倍少60元.

(1)求A、B兩種型號(hào)的自行車單價(jià)分別是多少元?

(2)后來(lái)由于該經(jīng)銷商資金緊張,投入購(gòu)車的資金不超過(guò)5.86萬(wàn)元,但購(gòu)進(jìn)這批自行年的總數(shù)不變,那么至多能購(gòu)進(jìn)B型車多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游客乘坐金碧皇宮號(hào)游船在長(zhǎng)江和嘉陵江的交匯處A點(diǎn),測(cè)得來(lái)福土最高樓頂點(diǎn)F的仰角為45°,此時(shí)他頭項(xiàng)正上方146米的點(diǎn)B處有架航拍無(wú)人機(jī)測(cè)得來(lái)福士最高樓頂點(diǎn)F的仰角為31°,游船朝碼頭方向行駛120米到達(dá)碼頭C,沿坡度i12的斜坡CD走到點(diǎn)D,再向前走160米到達(dá)來(lái)福士樓底E,則來(lái)福士最高樓EF的高度約為(  )(結(jié)果精確到0.1,參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.87,tan31°≈0.60

A.301.3B.322.5C.350.2D.418.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字、、的四個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

(1)若從中任取一個(gè)球,求摸出球上的漢字剛好是的概率;

(2)甲從中任取一球,不放回,再?gòu)闹腥稳∫磺,?qǐng)用樹狀圖或列表法,求甲取出的兩個(gè)球上的漢字恰能組成美麗光明的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案