題目列表(包括答案和解析)
3 |
π |
4 |
π |
4 |
π |
2 |
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
(本小題滿分14分) 設(shè)是定義在區(qū)間上的偶函數(shù),命題:在上單調(diào)遞減;命題:,若“或”為假,求實(shí)數(shù)的取值范圍。
(07年安徽卷文)(本小題滿分14分)設(shè)F是拋物線G:x2=4y的焦點(diǎn).
(Ⅰ)過(guò)點(diǎn)P(0,-4)作拋物線G的切線,求切線方程:
(Ⅱ)設(shè)A、B為勢(shì)物線G上異于原點(diǎn)的兩點(diǎn),且滿足,延長(zhǎng)AF、BF分別交拋物線G于點(diǎn)C,D,求四邊形ABCD面積的最小值.
(本小題滿分14分)關(guān)于的方程
(1)若方程C表示圓,求實(shí)數(shù)m的取值范圍;
(2)在方程C表示圓時(shí),若該圓與直線
且,求實(shí)數(shù)m的值;
(3)在(2)的條件下,若定點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)P是線段MN上的動(dòng)點(diǎn),
求直線AP的斜率的取值范圍。
一、填空題:
1.; 2.; 3.; 4.; 5.;
6.; 7. 8.; 9.21; 10.;
11.;12.; 13.; 14.
二、解答題:
15.(1)編號(hào)為016; ----------------------------3分
(2)
分組
頻數(shù)
頻率
60.5~70.5
8
0.16
70.5~80.5
10
0.20
80.5~90.5
18
0.36
90.5~100.5
14
0.28
合計(jì)
50
1
------------- ----------------------------8分
(3)在被抽到的學(xué)生中獲二獎(jiǎng)的人數(shù)是9+7=16人,
占樣本的比例是,即獲二等獎(jiǎng)的概率約為32%,
所以獲二等獎(jiǎng)的人數(shù)估計(jì)為800×32%=256人。有 ------------------------13分
答:獲二等獎(jiǎng)的大約有256人。 -----------------------------------14分
16.解:(1) B=600,A+C=1200, C=1200 -A,
∴ sinA-sinC+ cos(A-C)
=sinA- cosA+[1-2sin2(A-60°)]=,
∴sin(A-60°)[1- sin(A-60°)]=0? -------------------------4分
∴sin(A-60°)=0或sin(A-60°)=, 又0°<A<120°,
∴A=60°或105°.??? -------------------------8分
(2) 當(dāng)A=60°時(shí),S△=acsinB=×4R2sin360°= ------------11分
當(dāng)A=105°時(shí),?S△=×4R2?sin105°sin15°sin60°= ----------------14分
17.解:(1)如四面體A1-ABC或四面體C1-ABC或四面體A1-ACD或四面體C1-ACD; ---4分
(2)如四面體B1-ABC或四面體D1-ACD; -------------------------8分
(3)如四面體A-B1CD1(3分 ); -------------------------11分
設(shè)長(zhǎng)方體的長(zhǎng)、寬、高分別為,則 .---------14分
18.(1)如圖,由光學(xué)幾何知識(shí)可知,點(diǎn)關(guān)于的對(duì)稱點(diǎn)在過(guò)點(diǎn)且傾斜角為的直線上。在中,橢圓長(zhǎng)軸長(zhǎng), ----4分
又橢圓的半焦距,∴,
∴所求橢圓的方程為. -----------------------------7分
(2)路程最短即為上上的點(diǎn)到圓的切線長(zhǎng)最短,由幾何知識(shí)可知,應(yīng)為過(guò)原點(diǎn)且與垂直的直線與的交點(diǎn),這一點(diǎn)又與點(diǎn)關(guān)于對(duì)稱,∴,故點(diǎn)的坐標(biāo)為. -------------------------15分
注:用代數(shù)方法求解同樣分步給分!
19. 解:(1)若,對(duì)于正數(shù),的定義域?yàn)?sub>,但 的值域,故,不合要求. --------------------------2分
若,對(duì)于正數(shù),的定義域?yàn)?sub>. -----------------3分
由于此時(shí),
故函數(shù)的值域. ------------------------------------6分
由題意,有,由于,所以.------------------8分
20.解:(1)依題意數(shù)列的通項(xiàng)公式是,
故等式即為,
同時(shí)有,
兩式相減可得 ------------------------------3分
可得數(shù)列的通項(xiàng)公式是,
知數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列。 ---------------------------4分
(2)設(shè)等比數(shù)列的首項(xiàng)為,公比為,則,從而有:
,
又,
故 -----------------------------6分
,
要使是與無(wú)關(guān)的常數(shù),必需, ----------------------------8分
即①當(dāng)?shù)缺葦?shù)列的公比時(shí),數(shù)列是等差數(shù)列,其通項(xiàng)公式是;
②當(dāng)?shù)缺葦?shù)列的公比不是2時(shí),數(shù)列不是等差數(shù)列. ------------9分
(3)由(2)知, ------------------------------------------10分
--------------14分
----------------------------16分
|