(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
(1);(2)的取值范圍是 ;(3)見(jiàn)解析。
【解析】
試題分析:(Ⅰ)求導(dǎo)函數(shù),利用圖象在點(diǎn)(1,f(1))處的切線與直線y=2x+1平行,可得f′(1)=a-b=2,即可求a,b滿足的關(guān)系式;
(Ⅱ)由(Ⅰ)知,構(gòu)造新函數(shù)g(x)=f(x)-2lnx=-2lnx,x∈[1,+∞)則根據(jù)g(1)=0,g′(x),比較對(duì)應(yīng)方程根的大小,進(jìn)行分類(lèi)討論,即可求得a的取值范圍;
(1),根據(jù)題意,即 ………3分
(2)由(1)知,,………4分
令,
則,= ………5分
①當(dāng)時(shí), ,
若,則,在為減函數(shù),存在,
即在上不恒成立. ………6分
②時(shí),,當(dāng)時(shí),,在增函數(shù),又,
∴,∴恒成立.………7分
綜上所述,所求的取值范圍是 …………8分
(3)由(2)知當(dāng)時(shí),在上恒成立.取得
令,得,
即 ……10分
∴ ………11分
上式中令n=1,2,3,…,n,并注意到:
然后n個(gè)不等式相加得到 ………14分
考點(diǎn):本試題主要考查了導(dǎo)數(shù)知識(shí)的運(yùn)用,考查恒成立問(wèn)題,考查不等式的證明。屬于中檔試題。
點(diǎn)評(píng):解決該試題的關(guān)鍵是正確求出導(dǎo)函數(shù),構(gòu)造新函數(shù),利用函數(shù)的單調(diào)性解題,這是解決一般不等式恒成立問(wèn)題的常用的方法,也是比較重要的方法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.
(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com