解: 2006學(xué)年第一學(xué)期期中杭州地區(qū)七校聯(lián)考 查看更多

 

題目列表(包括答案和解析)

(本小題滿分分)

已知 是偶函數(shù).

(Ⅰ)求實(shí)常數(shù)的值,并給出函數(shù)的單調(diào)區(qū)間(不要求證明);

(Ⅱ)為實(shí)常數(shù),解關(guān)于的不等式:

 

查看答案和解析>>

   (本小題滿分分)已知函數(shù).

(I)若不等式的解集為,求實(shí)數(shù)a的值;

(II)在⑴的條件下,求的最小值.

 

 

查看答案和解析>>

 

(本小題滿分分)

已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為、,一個(gè)頂點(diǎn)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

    (2)對(duì)于軸上的點(diǎn),橢圓上存在點(diǎn),使得,求的取值范圍.

 

查看答案和解析>>

(本小題12分)解關(guān)于x的不等式ax2-(a+1)x+1<0

查看答案和解析>>

(本小題滿分分)

在股票市場(chǎng)上,投資者常參考   股價(jià)(每一股的價(jià)格)的某條平滑均線(記作)的變化情況來(lái)決定買(mǎi)入或賣(mài)出股票.股民老張?jiān)谘芯抗善钡淖邉?shì)圖時(shí),發(fā)現(xiàn)一只股票的均線近期走得很有特點(diǎn):如果按如圖所示的方式建立平面直角坐標(biāo)系,則股價(jià)(元)和時(shí)間的關(guān)系在段可近似地用解析式)來(lái)描述,從點(diǎn)走到今天的點(diǎn),是震蕩筑底階段,而今天出現(xiàn)了明顯的筑底結(jié)束的標(biāo)志,且點(diǎn)和點(diǎn)正好關(guān)于直線對(duì)稱.老張預(yù)計(jì)這只股票未來(lái)的走勢(shì)如圖中虛線所示,這里段與段關(guān)于直線對(duì)稱,段是股價(jià)延續(xù)段的趨勢(shì)(規(guī)律)走到這波上升行情的最高點(diǎn).

現(xiàn)在老張決定取點(diǎn),點(diǎn),點(diǎn)來(lái)確定解析式中的常數(shù),并且已經(jīng)求得.

(Ⅰ)請(qǐng)你幫老張算出,并回答股價(jià)什么時(shí)候見(jiàn)頂(即求點(diǎn)的橫坐標(biāo)).

(Ⅱ)老張如能在今天以點(diǎn)處的價(jià)格買(mǎi)入該股票股,到見(jiàn)頂處點(diǎn)的價(jià)格全部賣(mài)出,不計(jì)其它費(fèi)用,這次操作他能賺多少元?

 

查看答案和解析>>

1、A   2、C   3、B   4、D    5、A    6、D    7、C    8、B    9、A    10、D

11、            12、 

13、或等        14、

15、(1),   ----- (′)

(2)當(dāng)時(shí),,當(dāng)時(shí),,

由已知得,---------------------------------------------()

故當(dāng)即時(shí),----()

 

16、中:有兩個(gè)不等的負(fù)根,,得,----()

中:無(wú)實(shí)根,得---()

命題與命題有且只有一個(gè)為真,

若真假,則,----------()

若假真,則,---------()

綜上得-----------()

 

17、(1),由題意知,即, ∴,

得,

令得 ,或 (舍去)

當(dāng)時(shí),; 當(dāng)時(shí), ;

  當(dāng)時(shí),有極小值,又 

∴ 在上的最小值是,最大值是。----------()

(2)若在上是增函數(shù),則對(duì)恒成立,

   ∴ ,   (當(dāng)時(shí),取最小值)。

  ∴ ---------------------------------()

  

18、(1)由題意可設(shè),則,,

,點(diǎn)在函數(shù)的圖像上,

,當(dāng)時(shí),,時(shí),,

    。-------------------------------------------------------------()

   (2),

     

 

由對(duì)所有都成立得,,故最小的正整數(shù)。--()

 

19、(1)令得,令,得,

,為奇函數(shù),

又,,在上是單調(diào)函數(shù),故由 知在上是單調(diào)遞增函數(shù)。------------------------------------------------------------------------------------()

(2)不等式即,由(1)知:,,即,

得-------------------------------------------------

  (3)若對(duì)恒成立,

即對(duì)恒成立,

  即對(duì)恒成立,

 由在上是單調(diào)遞增函數(shù)得

即對(duì)恒成立,

    ,得----------------------()

 

20、(1)數(shù)列是公比為的等比數(shù)列,且,

      ,數(shù)列隔項(xiàng)成等比, 

      -------------------------------------------------------------()

   (2),當(dāng)時(shí),

          ,

   當(dāng) 時(shí),,當(dāng)時(shí),

  。

 

 

 

 


同步練習(xí)冊(cè)答案