題目列表(包括答案和解析)
設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;
(Ⅱ)已知,若函數(shù)的圖象總在直線的下方,求的取值范圍;
(Ⅲ)記為函數(shù)的導(dǎo)函數(shù).若,試問:在區(qū)間上是否存在()個(gè)正數(shù)…,使得成立?請(qǐng)證明你的結(jié)論.
設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;
(Ⅱ)已知,若函數(shù)的圖象總在直線的下方,求的取值范圍;
(Ⅲ)記為函數(shù)的導(dǎo)函數(shù).若,試問:在區(qū)間上是否存在()個(gè)正數(shù)…,使得成立?請(qǐng)證明你的結(jié)論.
本大題滿分13分)
已知函數(shù),過該函數(shù)圖象上點(diǎn)
(Ⅰ)證明:圖象上的點(diǎn)總在圖象的上方;
(Ⅱ)若上恒成立,求實(shí)數(shù)的取值范圍.
(08年哈師大附中理) 已知函數(shù),過該函數(shù)圖象上任意一點(diǎn)的切線為
(1) 證明:圖象上的點(diǎn)總在圖象的上方(除去點(diǎn));
(2) 若在上恒成立,求的取值范圍。
設(shè)函數(shù)f(x)=ax2+lnx.
(Ⅰ)當(dāng)a=-1時(shí),求函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-的下方,求a的取值范圍;
(Ⅲ)記為函數(shù)f(x)的導(dǎo)函數(shù).若a=1,試問:在區(qū)間[1,10]上是否存在k(k<100)個(gè)正數(shù)x1,x2,x3…xk,使得成立?請(qǐng)證明你的結(jié)論.
(一)
一、選擇題
1~8:CAAD BBBD
二、填空題
9、 10、35 11、 12、
13、 14、10 15、
三、解答題
16、解:(1)由及正弦定理有:
∴或 ……….2分
若,且,
∴,; ……….4分
∴,則,∴三角形. ……….6分
(2)∵ ,∴,
∴,而, ……….8分
∴,∴,∴. ……….12分
17解:(1)取的中點(diǎn)的中點(diǎn)連結(jié)
平面, .
又,
平面.……………………………3分
,四邊形是平行四邊形, 平面
又平面, 平面平面 ………………………………6分
。ǎ玻┻^作于,連結(jié).
由(1)中的平面平面知面,所以在面上的射影為,所以就是所求的角. …………………………………………9分
令正方體的棱長(zhǎng)為,所以,所以.
即與平面所成角的大小的正弦值為. …………………………12分
18解:(1)表示取出的三個(gè)球中數(shù)字最大者為3.
①三次取球均出現(xiàn)最大數(shù)字為3的概率
②三取取球中有2次出現(xiàn)最大數(shù)字3的概率
③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率
∴. ……………………………………………………7分
(2)在時(shí), 利用(1)的原理可知:
,(=1,2,3,4)
1
2
3
4
的概率分布為:
=1×+2×+3×+4× = .………………………………………………7分
19、解:(I)由已知拋物線的焦點(diǎn)為
故所求橢圓方程為 …………6分
(II)設(shè)直線BC的方程為
代入橢圓方程并化簡(jiǎn)得 …………9分
又點(diǎn)A到BC的距離為, …………11分
所以△ABC面積的最大值為 …………14分
20解:(1),
設(shè)
為增,
當(dāng)
,
所以圖象上的點(diǎn)總在圖象的上方. …………………………6分
(2)當(dāng).
x
(-∞,0)
(0,1)
1
(1,+∞)
F‘(x)
-
-
0
+
F(x)
減
減
e
增
①當(dāng)x>0時(shí),F(xiàn)(x)在x=1時(shí)有最小值e,.
②當(dāng)x<0時(shí),F(xiàn)(x)為減函數(shù),
,
.
③當(dāng)x=0時(shí),∈R.
由①②③,恒成立的的范圍是. ……………………………………14分
21解:(1)由得
.
而,所以,
所以數(shù)列為等比數(shù)列. …………………………………………4分
(2)由(1)有. ……………………………………6分
所以,,……,
,累和得
. …8分
因?yàn)?sub>,………………………………………………9分
所以.
記,用錯(cuò)位相減法得
,所以.
所以.
即當(dāng)為奇數(shù)時(shí)命題成立.……………………………………………………………11分
又,
所以.即當(dāng)為偶數(shù)時(shí)命題成立.
綜合以上得.………………………………………………13分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com