題目列表(包括答案和解析)
(本題滿分16分)
已知函數(shù)f(x)=lnx+,其中a為大于零的常數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)不是單調(diào)函數(shù),求a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[e,e2]上的最小值.
(本題滿分16分)
已知函數(shù)是不同時(shí)為零的常數(shù)),其導(dǎo)函數(shù)為。
當(dāng)a=時(shí),若存在,使得>成立,求b的取值范圍;
求證:函數(shù)y=d (-1,0)內(nèi)至少存在一個(gè)零點(diǎn);
若函數(shù)f(x)為奇函數(shù),且在x=1處的切線垂直于在線x+2y-3=0, 關(guān)于x的方程在[-1,t](t>-1)上有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍。
(本題滿分16分)
已知函數(shù)是不同時(shí)為零的常數(shù)),其導(dǎo)函數(shù)為。
當(dāng)a=時(shí),若存在,使得>成立,求b的取值范圍;
求證:函數(shù)y=d (-1,0)內(nèi)至少存在一個(gè)零點(diǎn);
若函數(shù)f(x)為奇函數(shù),且在x=1處的切線垂直于在線x+2y-3=0, 關(guān)于x的方程在[-1,t](t>-1)上有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍。
(本小題滿分16分)
已知函數(shù)f(x)=為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
(Ⅰ)求f()的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
(本題滿分16分)已知定義在上的函數(shù)f (x)滿足:
①對(duì)于任意的都有f (xy)=f (x)+f (y); ②當(dāng)時(shí),f (x)>0.
求證:(1)f (1)=0; (2)對(duì)任意的,有; (3)f (x)在上是增函數(shù).
說(shuō)明:
1.本解答給出的解法供參考.如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制訂相應(yīng)的評(píng)分細(xì)則.
2.對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后續(xù)部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定給分,但不得超過(guò)該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后續(xù)部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.
3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).
4.只給整數(shù)分?jǐn)?shù),填空題不給中間分?jǐn)?shù).
一、填空題(本大題共14小題,每小題5分,共70分)
1.{0,1} 2.1 3.2 4.-3 5.5 6.[2,5]
7.60 8.4 9. 10.(,) 11. 12.4
13. 14.(,]
二、解答題(本大題共6小題,共90分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)
15.(本題滿分14分)
解:(1)tana==,…………………………………………3分
所以=,又因?yàn)閟in2a+cos2a=1,
解得sina=.………………………………………………………7分
(2)因?yàn)?<a<<b<p,所以0<b-a<p.
因?yàn)閏os(b-a)=,所以sin(b-a)=.……………………9分
所以sinb=sin[(b-a)+a]
=sin(b-a)cosa+cos(b-a)sina=×+×=,……12分
因?yàn)?i>b∈(,p),
所以b=.………………………………………………………14分
16.(本題滿分14分)
證明:(1)取AB1中點(diǎn)F,連結(jié)DF,CF.因?yàn)?i>D為A1B1中點(diǎn),
所以DF∥=AA1.
因?yàn)?i>E為CC1中點(diǎn),AA1∥=CC1,
所以CE∥=DF.
所以四邊形CFDE為平行四邊形.
所以DE∥CF.…………………………………………………4分
因?yàn)?i>CFÌ平面ABC,DE(/平面ABC,
所以DE∥平面ABC.…………………………………………7分
(2) 因?yàn)?i>AA
因?yàn)?i>BB
因?yàn)?i>AC∶AB∶CC1=3∶5∶4,
所以AC∶AB∶BC=3∶5∶4,
所以AC2+BC2=AB2.……………………………………10分
所以AC^BC.
所以AC^平面BB
所以AC^BC1.
所以BC1^平面AB
17.(本題滿分14分)
解:(1)設(shè)從A地運(yùn)出的油量為a,根據(jù)題設(shè),直接運(yùn)油到B地,往返油耗等于a,
所以B地收到的油量為(1-)a.
所以運(yùn)油率P1==.……………………………………3分
而從A地運(yùn)出的油量為a時(shí),C地收到的油量為(1-)a,
B地收到的油量(1-)(1-)a,
所以運(yùn)油率P2=
=(1-)(1-)=(+)(1-).…………………………7分
所以P2-P1=x(1-x),因?yàn)?<x<1,
所以P2-P1>0,即P2>P1.…………………………………………9分
(2)因?yàn)?i>P2=(+)(1-)≤=.
當(dāng)且僅當(dāng)+=1-,即x=時(shí),取“=”.
所以當(dāng)C地為AB中點(diǎn)時(shí),運(yùn)油率P2有最大值.……………………………………14分
18.(本題滿分16分)
解:(1)因?yàn)閽佄锞頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-1,
所以拋物線開(kāi)口向右,且-=-1,所以p=2.
所以所求的拋物線方程為y2=4x.…………………………………………4分
(2)設(shè)P(x0,y0),則y02=4x0,半徑r=PF=x0+1,
圓P的方程為(x-x0)2+(y-y0)2=(x0+1)2,……………………………6分
設(shè)AB的方程為y=2x+b,由AB=2CD得,
圓心P到直線AB的距離2d=,……………………………6分
所以5d2=r2,即d=r.
因?yàn)?i>r=|x0+1|,d=,
代入得ㄏ2x0-y0+bㄏ=ㄏx0+1ㄏ.…………………………………8分
即2x0-y0+b=x0+1或2x0-y0+b=-x0-1.
所以x0-y0+b-1=0或3x0-y0+b+1=0.
因?yàn)?i>y02=4x0,所以x0=y02,
代入得y02-y0+(b-1)=0或y02-y0+(b+1)=0.……………………10分
方程y02-y0+(b-1)=0關(guān)于y0有解Û1-(b-1)≥0,b≤2.
方程y02-y0+(b+1)=0.關(guān)于y0有解Û1-3(b+1)≥0,b≤-.…12分
綜上所述,b的最大值為2.……………………………………………14分
此時(shí),y0=2,x0=1,r=x0+1=2,
所以圓P的方程為(x-1)2+(y-2)2=4.……………………………16分
19.(本題滿分16分)
解: f ¢(x)=(x>0) 2分
(1)由已知,得f ¢(x)在[1,+∞)上有解,即a=在(1,+∞)上有解,
又當(dāng)x∈(1,+∞)時(shí),<1,
所以a<1.又a>0,所以a的取值范圍是(0,1).………………………………6分
(2)①當(dāng)a≥時(shí),
因?yàn)?i>f ¢(x)>0在(e,e2)上恒成立,這時(shí)f(x)在[e,e2]上為增函數(shù),
所以當(dāng)x=e時(shí),f(x)min=f(e)=1+ ……………………………………………… 8分
②當(dāng)0<a≤時(shí),
因?yàn)?i>f ¢(x)<0在(e,e2)上恒成立,
這時(shí)f(x)在[e,e2]上為減函數(shù),
所以,當(dāng)x=e2時(shí),f(x)min=f(e2)=2-,…………………………………………10分
③當(dāng)<a<時(shí),令f¢(x)=0得,x=∈(e,e2),
又因?yàn)閷?duì)于x∈(e,)有f ¢(x)<0,
對(duì)于x∈(,e2)有f ¢(x)>0,
所以當(dāng)x=時(shí),f(x)min=f()=ln+1-.………………………………………14分
綜上,f(x)在[e,e2]上的最小值為
f(x)min=………………………………………16分
20.(本題滿分16分)
解:(1)由條件得an+2=(2+)an+1-an,
所以an+2-an+1=2(an+1-an),
即bn+1=2bn,又b1=a2-a1=2,所以bn≠0,
從而=2對(duì)n∈N*成立,
所以數(shù)列{bn}是首項(xiàng)為b1=2,公比q=2的等比數(shù)列,
所以bn=2n.…………………………………………………6分
(2)由(1)得an+1―an=2n.所以(n+1)an+1-nan=(n+1)×2n,………………8分
所以
…………,
nan-(n-1)an-1=n×2n-1,
相加得nan-a1=2×21+3×22+4×23+…+n×2n-1,
所以2(nan-a1)= 2×22+3×23+…+(n-1)×2n-1+n×2n.
兩式相減得:-(nan-a1)=2(21+22+…+2n-1)-n×2n=2n+1-4-n×2n,所以
an=2n-=.…………………………………………………………11分
(3)因?yàn)?i>cn===4[-],…………13分
所以Sn=c1+c2+…+cn
=4[-+-+-+…+-]
=4[-]=2-<2.…………………………………………………16分
南京市第十三中學(xué)2009屆高三年級(jí)第三次模擬考試
數(shù)學(xué)附加卷答案 2009.5
1.(幾何證明選講)(本題滿分10分)
證明:證明:因?yàn)?i>A,B,C,D四點(diǎn)共圓,所以ÐADF=ÐABC.
因?yàn)?i>PF∥BC,所以ÐAFP=ÐABC.所以ÐAFP=ÐFQP.
因?yàn)?ETH;APF=ÐFPA,所以△APF∽△FPQ.所以=.………………5分
所以PF2=PA×PD.因?yàn)?i>PQ與圓相切,所以PQ2=PA×PD.
所以PF2=PQ2.所以PF=PQ.……………………………………………10分
2.(矩陣與變換)(本題滿分10分)
解:∵MN= =,
設(shè)直線y=2x+1上一點(diǎn)(x0,y0)在MN作用下變?yōu)?x¢,y¢),則
=, 即=,即
從而可得……………………………………5分
∵y0=2x0+1,代入得y¢=2(x¢-y¢)+1,
化簡(jiǎn)得2x¢-y¢+1=0,即6x¢-5y¢+3=0.
即變換后的直線方程是6x-5y+3=0.…………………………10分
3.(坐標(biāo)系與參數(shù)方程)(本題滿分10分)
解:⊙O的直角坐標(biāo)方程是x2+y2-x-y=0,
即(x-)2+(y-)2=.………………………………………………3分
直線l的極坐標(biāo)方程為r(cosq-sinq)=4,
直線l的直角坐標(biāo)方程為x-y-4=0.………………………………6分
設(shè)M(+cosq,+sinq)為⊙C上任意一點(diǎn),M點(diǎn)到直線l的距離
d==,
當(dāng)q=時(shí),dmin=.…………………………………………………10分
4.(不等式選講)(本題滿分10分)
解:因?yàn)椋?=3,………………………………………4分
所以ㄏx+1ㄏ+ㄏx-1ㄏ≤3,
x∈[-,].…………………………………………………………10分
5.(本題滿分10分)
解:解:(1)選取的5只恰好組成完整“奧運(yùn)會(huì)吉祥物”的概率
………………………………………………3分
(2)ξ的取值為100,80,60,40.…………………………………4分
……………………………………………………8分
ξ的分布列為
ξ
100
80
60
40
……………………………………………………………………………………9分
Eξ=…………………………………………10分
6.(本題滿分10分)
解:(1)∵,∴.
∴().
∴().
∴().
∴().
∴數(shù)列為等比數(shù)列,其公比為,首項(xiàng),
而,且,∴.
∴.
∴.…………………………………………………………4分.
(2)∵,
∴ .
∴.
∴, ①
∴2. ②
①-②得 -,
,
∴.…………………………………………………6分.
∴()==.
當(dāng)時(shí),=;
當(dāng)時(shí),-()=4(4-5)=-4,;
當(dāng)時(shí),,
且,
∴時(shí),總有.…………………………………………………10分.
∴時(shí),總有.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com