(本題滿分16分)
已知函數(shù)f(x)=lnx+,其中a為大于零的常數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)不是單調(diào)函數(shù),求a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[e,e2]上的最小值.
(本題滿分16分)
解: f ¢(x)=(x>0) …… 2分
(1)由已知,得f ¢(x)在[1,+∞)上有解,即a=在(1,+∞)上有解,
又當(dāng)x∈(1,+∞)時(shí),<1,所以a<1.又a>0,所以a的取值范圍是(0,1)……6分
(2)①當(dāng)a≥時(shí),因?yàn)?i>f ¢(x)>0在(e,e2)上恒成立,這時(shí)f(x)在[e,e2]上為增函數(shù),所以當(dāng)x=e時(shí),f(x)min=f(e)=1+ …………… 8分
②當(dāng)0<a≤時(shí),因?yàn)?i>f ¢(x)<0在(e,e2)上恒成立,這時(shí)f(x)在[e,e2]上為減函數(shù),
所以,當(dāng)x=e2時(shí),f(x)min=f(e2)=2+,………………10分
③當(dāng)<a<時(shí),令f¢(x)=0得,x=∈(e,e2),
又因?yàn)閷?duì)于x∈(e,)有f ¢(x)<0,
對(duì)于x∈(,e2)有f ¢(x)>0,
所以當(dāng)x=時(shí),f(x)min=f()=ln+1-…………14分
綜上,f(x)在[e,e2]上的最小值為
f(x)min=…………………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(,、是常數(shù),且),對(duì)定義域內(nèi)任意(、且),恒有成立.
(1)求函數(shù)的解析式,并寫(xiě)出函數(shù)的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,
.(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省私立無(wú)錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長(zhǎng)分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱(chēng)為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com