(Ⅱ).由題設(shè).必須整改的煤礦數(shù)服從二項(xiàng)分布B.從而的數(shù)學(xué)期望是 查看更多

 

題目列表(包括答案和解析)

如圖,已知直線)與拋物線和圓都相切,的焦點(diǎn).

(Ⅰ)求的值;

(Ⅱ)設(shè)上的一動點(diǎn),以為切點(diǎn)作拋物線的切線,直線軸于點(diǎn),以、為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為,    直線軸交點(diǎn)為,連接交拋物線、兩點(diǎn),求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去)

設(shè)與拋物線的相切點(diǎn)為,又,得,.     

代入直線方程得:,∴    所以,

第二問中,由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線

第三問中,設(shè)直線,代入結(jié)合韋達(dá)定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去).     …………………(2分)

設(shè)與拋物線的相切點(diǎn)為,又,得,.     

代入直線方程得:,∴    所以,.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線上.…(2分)

(Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

,

的面積范圍是

 

查看答案和解析>>

(本小題滿分14分)甲、乙兩間商店購進(jìn)同一種商品的價格均為每件30元,銷售價均為每件50元.根據(jù)前5年的有關(guān)資料統(tǒng)計(jì),甲商店這種商品的年需求量服從以下分布:

10

20

30

40

50

0.15

0.20

0.25

0.30

0.10

乙商店這種商品的年需求量服從二項(xiàng)分布

若這種商品在一年內(nèi)沒有售完,則甲商店在一年后以每件25元的價格處理;乙商店一年后剩下的這種商品第1件按25元的價格處理,第2件按24元的價格處理,第3件按23元的價格處理,依此類推.今年甲、乙兩間商店同時購進(jìn)這種商品40件,根據(jù)前5年的銷售情況,請你預(yù)測哪間商店的期望利潤較大?

查看答案和解析>>

(本小題滿分14分)

由函數(shù)確定數(shù)列,若函數(shù)的反函數(shù)能確定數(shù)列,,則稱數(shù)列是數(shù)列的“反數(shù)列”。

(1)若函數(shù)確定數(shù)列的反數(shù)列為,求的通項(xiàng)公式;

(2)對(1)中,不等式對任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè),若數(shù)列的反數(shù)列為,的公共項(xiàng)組成的數(shù)列為, 求數(shù)列項(xiàng)和。

查看答案和解析>>

 (本小題滿分13分,(Ⅰ)小問5分,(Ⅱ)小問8分.)

衛(wèi)生部門對某大學(xué)的4個學(xué)生食堂進(jìn)行食品衛(wèi)生檢查(簡稱檢查).若檢查不合格,則必須整改,若整改后經(jīng)復(fù)查不合格則強(qiáng)行關(guān)閉該食堂.設(shè)每個食堂檢查是否合格是相互獨(dú)立的,且每個食堂整改前檢查合格的概率為,整改后檢查合格的概率是.計(jì)算(結(jié)果用小數(shù)表示,精確到

(Ⅰ)恰有一個食堂必須整改的概率;

(Ⅱ)至少關(guān)閉一個食堂的概率.

 

 

 

 

 

 

查看答案和解析>>

解:(Ⅰ)設(shè),其半焦距為.則

   由條件知,得

   的右準(zhǔn)線方程為,即

   的準(zhǔn)線方程為

   由條件知, 所以,故,

   從而,  

(Ⅱ)由題設(shè)知,設(shè),,

   由,得,所以

   而,由條件,得

   由(Ⅰ)得,.從而,,即

   由,得.所以

   故

查看答案和解析>>


同步練習(xí)冊答案