如圖,已知直線)與拋物線和圓都相切,的焦點.

(Ⅰ)求的值;

(Ⅱ)設(shè)上的一動點,以為切點作拋物線的切線,直線軸于點,以為鄰邊作平行四邊形,證明:點在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,    直線軸交點為,連接交拋物線、兩點,求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去)

設(shè)與拋物線的相切點為,又,得,.     

代入直線方程得:,∴    所以,

第二問中,由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

設(shè),由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標(biāo)為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因為是定點,所以點在定直線

第三問中,設(shè)直線,代入結(jié)合韋達(dá)定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去).     …………………(2分)

設(shè)與拋物線的相切點為,又,得,.     

代入直線方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

設(shè),由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因為是定點,所以點在定直線上.…(2分)

(Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

,

的面積范圍是

 

【答案】

(Ⅰ),.    (Ⅱ)點在定直線上.…(2分)(Ⅲ)范圍是

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)如圖,已知直線l與拋物線C交于AB兩點,為坐標(biāo)原點,

(Ⅰ)求直線l和拋物線C的方程;(Ⅱ)拋物線上一動點PAB運動時,求△ABP面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)如圖,已知直線)與拋物線和圓都相切,的焦點.

(Ⅰ)求的值;

(Ⅱ)設(shè)上的一動點,以為切點作拋物線

的切線,直線軸于點,以

鄰邊作平行四邊形,證明:點在一條

定直線上;

  (Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,

直線軸交點為,連接交拋物線

、兩點,求△的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)如圖,已知直線)與拋物線和圓都相切,的焦點.

(Ⅰ)求的值;

(Ⅱ)設(shè)上的一動點,以為切點作拋物線

的切線,直線軸于點,以、

鄰邊作平行四邊形,證明:點在一條

定直線上;

  (Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,

直線軸交點為,連接交拋物線

、兩點,求△的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)如圖,已知直線)與拋物線和圓都相切,的焦點.

(Ⅰ)求的值;

(Ⅱ)設(shè)上的一動點,以為切點作拋物線

的切線,直線軸于點,以

鄰邊作平行四邊形,證明:點在一條

定直線上;

  (Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為

直線軸交點為,連接交拋物線

兩點,求△的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案